Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2005 Nov;141(11):1388-96.
doi: 10.1001/archderm.141.11.1388.

The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma

Affiliations
Multicenter Study

The performance of SolarScan: an automated dermoscopy image analysis instrument for the diagnosis of primary melanoma

Scott W Menzies et al. Arch Dermatol. 2005 Nov.

Erratum in

  • Arch Dermatol. 2006 May;142(5):558. Virol, Alexandra [corrected to Varol, Alexandra]

Abstract

Objective: To describe the diagnostic performance of SolarScan (Polartechnics Ltd, Sydney, Australia), an automated instrument for the diagnosis of primary melanoma.

Design: Images from a data set of 2430 lesions (382 were melanomas; median Breslow thickness, 0.36 mm) were divided into a training set and an independent test set at a ratio of approximately 2:1. A diagnostic algorithm (absolute diagnosis of melanoma vs benign lesion and estimated probability of melanoma) was developed and its performance described on the test set. High-quality clinical and dermoscopy images with a detailed patient history for 78 lesions (13 of which were melanomas) from the test set were given to various clinicians to compare their diagnostic accuracy with that of SolarScan.

Setting: Seven specialist referral centers and 2 general practice skin cancer clinics from 3 continents. Comparison between clinician diagnosis and SolarScan diagnosis was by 3 dermoscopy experts, 4 dermatologists, 3 trainee dermatologists, and 3 general practitioners.

Patients: Images of the melanocytic lesions were obtained from patients who required either excision or digital monitoring to exclude malignancy.

Main outcome measures: Sensitivity, specificity, the area under the receiver operator characteristic curve, median probability for the diagnosis of melanoma, a direct comparison of SolarScan with diagnoses performed by humans, and interinstrument and intrainstrument reproducibility.

Results: The melanocytic-only diagnostic model was highly reproducible in the test set and gave a sensitivity of 91% (95% confidence interval [CI], 86%-96%) and specificity of 68% (95% CI, 64%-72%) for melanoma. SolarScan had comparable or superior sensitivity and specificity (85% vs 65%) compared with those of experts (90% vs 59%), dermatologists (81% vs 60%), trainees (85% vs 36%; P =.06), and general practitioners (62% vs 63%). The intraclass correlation coefficient of intrainstrument repeatability was 0.86 (95% CI, 0.83-0.88), indicating an excellent repeatability. There was no significant interinstrument variation (P = .80).

Conclusions: SolarScan is a robust diagnostic instrument for pigmented or partially pigmented melanocytic lesions of the skin. Preliminary data suggest that its performance is comparable or superior to that of a range of clinician groups. However, these findings should be confirmed in a formal clinical trial.

PubMed Disclaimer

Comment in

Publication types