A data integration methodology for systems biology: experimental verification
- PMID: 16301536
- PMCID: PMC1297683
- DOI: 10.1073/pnas.0508649102
A data integration methodology for systems biology: experimental verification
Abstract
The integration of data from multiple global assays is essential to understanding dynamic spatiotemporal interactions within cells. In a companion paper, we reported a data integration methodology, designated Pointillist, that can handle multiple data types from technologies with different noise characteristics. Here we demonstrate its application to the integration of 18 data sets relating to galactose utilization in yeast. These data include global changes in mRNA and protein abundance, genome-wide protein-DNA interaction data, database information, and computational predictions of protein-DNA and protein-protein interactions. We divided the integration task to determine three network components: key system elements (genes and proteins), protein-protein interactions, and protein-DNA interactions. Results indicate that the reconstructed network efficiently focuses on and recapitulates the known biology of galactose utilization. It also provided new insights, some of which were verified experimentally. The methodology described here, addresses a critical need across all domains of molecular and cell biology, to effectively integrate large and disparate data sets.
Figures




Similar articles
-
A data integration methodology for systems biology.Proc Natl Acad Sci U S A. 2005 Nov 29;102(48):17296-301. doi: 10.1073/pnas.0508647102. Epub 2005 Nov 21. Proc Natl Acad Sci U S A. 2005. PMID: 16301537 Free PMC article.
-
A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells.BMC Syst Biol. 2015 Dec 9;9:91. doi: 10.1186/s12918-015-0240-5. BMC Syst Biol. 2015. PMID: 26646617 Free PMC article.
-
Improved understanding of gene expression regulation using systems biology.Expert Rev Proteomics. 2005 Dec;2(6):915-24. doi: 10.1586/14789450.2.6.915. Expert Rev Proteomics. 2005. PMID: 16307520 Review.
-
HyBrow: a prototype system for computer-aided hypothesis evaluation.Bioinformatics. 2004 Aug 4;20 Suppl 1:i257-64. doi: 10.1093/bioinformatics/bth905. Bioinformatics. 2004. PMID: 15262807
-
Biological Network Inference and analysis using SEBINI and CABIN.Methods Mol Biol. 2009;541:551-76. doi: 10.1007/978-1-59745-243-4_24. Methods Mol Biol. 2009. PMID: 19381531 Review.
Cited by
-
Inferring cellular networks--a review.BMC Bioinformatics. 2007 Sep 27;8 Suppl 6(Suppl 6):S5. doi: 10.1186/1471-2105-8-S6-S5. BMC Bioinformatics. 2007. PMID: 17903286 Free PMC article. Review.
-
Communication between levels of transcriptional control improves robustness and adaptivity.Mol Syst Biol. 2006;2:65. doi: 10.1038/msb4100106. Epub 2006 Nov 28. Mol Syst Biol. 2006. PMID: 17130867 Free PMC article.
-
Data integration for dynamic and sustainable systems biology resources: challenges and lessons learned.Chem Biodivers. 2010 May;7(5):1124-41. doi: 10.1002/cbdv.200900317. Chem Biodivers. 2010. PMID: 20491070 Free PMC article. Review.
-
The application of NMR-based metabonomics in neurological disorders.NeuroRx. 2006 Jul;3(3):358-72. doi: 10.1016/j.nurx.2006.05.004. NeuroRx. 2006. PMID: 16815219 Free PMC article. Review.
-
Systems medicine: the future of medical genomics and healthcare.Genome Med. 2009 Jan 20;1(1):2. doi: 10.1186/gm2. Genome Med. 2009. PMID: 19348689 Free PMC article.
References
-
- Mrowka, R., Patzak, A. & Herzel, H. (2001) Genome Res. 11, 1971–1973. - PubMed
-
- Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R. & Hood, L. (2001) Science 292, 929–934. - PubMed
-
- Longtine, M. S., McKenzie, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. & Pringle, J. R. (1998) Yeast 14, 953–961. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases