Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;78(1-4):185-93.
doi: 10.1016/j.prostaglandins.2005.07.003. Epub 2005 Sep 12.

12/15-Lipoxygenase gene disruption and vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway

Affiliations

12/15-Lipoxygenase gene disruption and vitamin E administration diminish atherosclerosis and oxidative stress in apolipoprotein E deficient mice through a final common pathway

Lei Zhao et al. Prostaglandins Other Lipid Mediat. 2005 Dec.

Abstract

Studies in mouse models of atherosclerosis using 12/15-lipoxygenase (12/15-LO) gene disruption and transgenic overexpression demonstrate a pro-oxidative, pro-atherogenic role for this pathway. Vitamin E has been shown to suppress lipid peroxidation and reduce early atherogenesis in several mouse models, although conflicting results from several clinical trials have been reported. ApoE(-/-) and apoE(-/-)/12/15-LO(-/-) mice were maintained on normal chow diet with or without Vitamin E supplement (2000 IU/kg). Plasma Vitamin E, urinary 8,12-iso-iPF(2alpha)-VI and aortic lesion quantitation were assessed. Plasma Vitamin E levels significantly increased upon Vitamin E diet supplementation. 12/15-LO gene disruption resulted in significantly reduced aortic lesions and decreased urinary 8,12-iso-iPF(2alpha)-VI levels in apoE(-/-) mice, similar to Vitamin E administration in the absence of 12/15-LO gene disruption. However, Vitamin E dietary supplementation did not afford additive or synergistic protection in apoE(-/-)/12/15-LO(-/-) mice. These results suggest that early 12/15-LO-mediated lipid peroxidation triggers ensuing non-enzymatic peroxidation that is susceptible to Vitamin E antioxidant action in a common pathway of atherogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources