Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;60(6):632-40.
doi: 10.1111/j.1365-2125.2005.02506.x.

Sulphation of o-desmethylnaproxen and related compounds by human cytosolic sulfotransferases

Affiliations

Sulphation of o-desmethylnaproxen and related compounds by human cytosolic sulfotransferases

Charles N Falany et al. Br J Clin Pharmacol. 2005 Dec.

Abstract

Naproxen is a nonsteroidal anti-inflammatory drug widely used as an analgesic and anti-inflammatory agent. The conjugated forms of naproxen and O-DMN, its demethylated metabolite, account for 66-92% of naproxen found in human urine. In this study, O-DMN and structurally related compounds were tested as substrates for seven isoforms of human cytosolic sulfotransferase (SULT). The SULT2 or hydroxysteroid SULT isoforms, SULT2A1 and SULT2B1b, did not show reactivity with any of the compounds. All five SULT1 isoforms were active although there was variability between SULT isoforms and compounds assayed. O-DMN was sulphated by SULT1A1, SULT1B1 and SULT1E1. All five SULT1 isoforms were capable of conjugating both alpha-naphthol and beta-naphthol. Apparent Km values for O-DMN sulphation were significantly higher than the values for either alpha-naphthol or beta-naphthol. SULTs 1A1, 1B1 and 1E1 had Kms for O-DMN sulphation of 84 microM, 690 microM and 341 microM, respectively. These Km values were 40-1150-fold higher than the Km values for alpha- and beta-naphthol. The role of the side-chain in O-DMN sulphation was studied using a series of structurally related beta-naphthol compounds as substrates for SULT1A1 and SULT1E1. The presence of lipophilic groups increased affinity for both SULT isoforms whereas inclusion of a carboxyl group inhibited activity. These studies indicate that O-DMN is sulphated by SULT1A1, B1 and 1E1. Because of the high concentrations of SULT1A1 expression in human liver and intestines and its higher affinity for O-DMN sulphation, SULT1A1 may have a role in the first pass metabolism of O-DMN.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structure of O-DMN and structurally related compounds
Figure 2
Figure 2
Concentration curves for sulphation of O-DMN by SULT1A1 (•), SULT1B1 (○), and SULT1E1 (▴). Reactions were run and [35S]-labelled products analysed by TLC as a described in Methods. O-DMN concentrations ranged from 0 to 500 µM
Figure 3
Figure 3
Concentration curves for sulphation of α-naphthol (•) and β-naphthol (○) by SULT1A1. Reactions were run and [35S]-labelled products analysed by TLC as described in Methods with either α- or β-naphthol as substrates at concentrations between 0 and 10 µM
Figure 4
Figure 4
Concentration curves for sulphation of α-naphthol (•) and β-naphthol (○) by SULT1A3. Reactions were run and [35S]-labelled products analysed by TLC as described in Methods with either α- or β-naphthol as substrates at concentrations between 0 and 100 µM

Similar articles

Cited by

References

    1. Segre EJ. Naproxen metabolism in man. J Clin Pharmacol. 1975;15:316–23. - PubMed
    1. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet. 1997;32:268–93. - PubMed
    1. Vree TB, van den Biggelaar-Martea M, Verwey-van Wissen CP. Determination of naproxen and its metabolite O-desmethylnaproxen with their acyl glucuronides in human plasma and urine by means of direct gradient high-performance liquid chromatography. J Chromatogr. 1992;578:239–49. - PubMed
    1. Kiang CH, Lee C, Kushinsky S. Isolation and identification of 6-desmethylnaproxen sulfate as a new metabolite of naproxen in human plasma. Drug Metab Dispos. 1989;17:43–8. - PubMed
    1. Falany CN. Enzymology of human cytosolic sulfotransferases. FASEB J. 1997;11:206–16. - PubMed

Publication types