Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;31(3):251-8.
doi: 10.1016/0028-3908(92)90175-o.

Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat

Affiliations

Electrophysiological evidence for a role of nitric oxide in prolonged chemical nociception in the rat

J E Haley et al. Neuropharmacology. 1992 Mar.

Abstract

The role of nitric oxide in the periphery and the spinal cord, during acute electrically-evoked and prolonged chemically-evoked nociceptive stimulation, was investigated in rats anaesthetised with halothane. The responses of single dorsal horn neurones to electrically-evoked A beta fibre and C fibre inputs were reduced by topical application (directly onto the spinal cord) of both the nitric oxide inhibitor, nitro-L-arginine methyl ester (L-NAME; 500-1500 micrograms) and the precursor of nitric oxide, L-arginine (4500 micrograms). Administration of L-NAME, either directly into the receptive field (500-1500 micrograms) or intravenously (10-100 mg/kg) had little or no effect on the acute electrically-evoked activity. Intravenous injection of L-NAME, administered 40 min prior to injection of formalin, significantly reduced the prolonged second peak of firing, with only a small effect on the short-duration first peak. Administration of L-NAME, directly into the site of injection of formalin, as a 10 min pretreatment, significantly reduced the second but not the first peak of the response. Topical application of L-NAME onto the spinal cord, as a 30 min pretreatment, significantly reduced both the first and second peaks of the response. This inhibition was not reversed by the coadministration of L-arginine, which was inhibitory by itself. Thus, nitric oxide may be involved, in a complex way, in nociceptive events both in the periphery and within the spinal cord.

PubMed Disclaimer

Publication types

LinkOut - more resources