Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;147(3):1427-37.
doi: 10.1210/en.2005-1091. Epub 2005 Nov 23.

Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1

Affiliations

Cyclic adenosine 5'-monophosphate-dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1

Tuba Ozbay et al. Endocrinology. 2006 Mar.

Abstract

In the human adrenal cortex, ACTH activates steroid hormone biosynthesis by acutely increasing cholesterol delivery to the mitochondrion and chronically increasing the transcription of steroidogenic genes (including CYP17) via a cAMP-dependent pathway. In the present study, we characterized the role of sphingolipids in ACTH-dependent steroidogenesis. H295R human adrenocortical cells were treated with ACTH or dibutyryl cAMP (Bt2cAMP) and the content of several sphingolipid species quantified by mass spectrometry. Both ACTH and Bt2cAMP decreased cellular amounts of several sphingolipids, including sphingomyelin, ceramides, and sphingosine and stimulating the activity of sphingosine kinase and increasing the release of sphingosine-1-phosphate (S1P) into the media. S1P increased CYP17 mRNA expression by promoting the cleavage and nuclear localization of sterol regulatory element binding protein (SREBP) 1. Chromatin immunoprecipitation assays revealed that Bt2cAMP and S1P increased acetylation of histone H3 and promoted binding of SREBP1 to the -520/-331 region of the CYP17 promoter. In summary, our studies demonstrate a role for sphingolipid metabolism and SREBP1 in ACTH-dependent CYP17 regulation and steroidogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms