Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;20(3):491-502.
doi: 10.1210/me.2005-0186. Epub 2005 Nov 23.

Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action

Affiliations

Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action

William R Harrington et al. Mol Endocrinol. 2006 Mar.

Abstract

Estrogenic hormones are classically thought to exert their effects by binding to nuclear estrogen receptors and altering target gene transcription, but estrogens can also have nongenomic effects through rapid activation of membrane-initiated kinase cascades. The development of ligands that selectively activate only the nongenomic pathways would provide useful tools to investigate the significance of these pathways. We have prepared large, abiotic, nondegradable poly(amido)amine dendrimer macromolecules that are conjugated to multiple estrogen molecules through chemically robust linkages. Because of their charge and size, these estrogen-dendrimer conjugates (EDCs) remain outside the nucleus. They stimulate ERK, Shc, and Src phosphorylation in MCF-7 breast cancer cells at low concentrations, yet they are very ineffective in stimulating transcription of endogenous estrogen target genes, being approximately 10,000-fold less potent than estradiol in genomic actions. In contrast to estradiol, EDC was not effective in stimulating breast cancer cell proliferation. Because these EDC ligands activate nongenomic activity at concentrations at which they do not alter the transcription of estrogen target genes, they should be useful in studying extranuclear initiated pathways of estrogen action in a variety of target cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms