Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov 24;438(7067):512-5.
doi: 10.1038/nature04115.

Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1

Affiliations

Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1

Stefan Hüttelmaier et al. Nature. .

Abstract

Localization of beta-actin messenger RNA to sites of active actin polymerization modulates cell migration during embryogenesis, differentiation and possibly carcinogenesis. This localization requires the oncofetal protein ZBP1 (Zipcode binding protein 1), which binds to a conserved 54-nucleotide element in the 3'-untranslated region of the beta-actin mRNA known as the 'zipcode'. ZBP1 promotes translocation of the beta-actin transcript to actin-rich protrusions in primary fibroblasts and neurons. It is not known how the ZBP1-RNA complex achieves asymmetric protein sorting by localizing beta-actin mRNA. Here we show that chicken ZBP1 modulates the translation of beta-actin mRNA. ZBP1 associates with the beta-actin transcript in the nucleus and prevents premature translation in the cytoplasm by blocking translation initiation. Translation only occurs when the ZBP1-RNA complex reaches its destination at the periphery of the cell. At the endpoint of mRNA transport, the protein kinase Src promotes translation by phosphorylating a key tyrosine residue in ZBP1 that is required for binding to RNA. These sequential events provide both temporal and spatial control over beta-actin mRNA translation, which is important for cell migration and neurite outgrowth.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

Associated data