Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;63(6):918-25.
doi: 10.1016/j.chemosphere.2005.09.051. Epub 2005 Nov 22.

Phytoextraction of metals from a multiply contaminated soil by Indian mustard

Affiliations

Phytoextraction of metals from a multiply contaminated soil by Indian mustard

M F Quartacci et al. Chemosphere. 2006 May.

Abstract

The effects of nitrilotriacetate (NTA) and citric acid applications on metal extractability from a multiply metal-contaminated soil, as well as on their uptake and accumulation by Indian mustard (Brassica juncea) were investigated. Desorption of metals from the soil increased with chelate concentration, NTA being more effective than citric acid in solubilising the metals. Plants were grown in a sandy soil collected from a contaminated field site and polluted by Cd, Cr, Cu, Pb and Zn. After 43 days of plant growth, pots were amended with NTA or citric acid at 5 mmol kg-1 soil. Control pots were not treated with any chelate. Harvest of plants was performed 1 week after chelate addition. Soil water-, NH4NO3- and DTPA-extractable Cd, Cu, Pb and Zn fractions were enhanced only in the presence of NTA. In comparison to unamended plants, Indian mustard shoot dry weights suffered significant reductions following NTA application. NTA treatment increased shoot metal concentrations by a factor of 2-3, whereas citric acid did not induce any difference compared to the control. Chromium was detected in the above-ground tissues only after NTA amendment. Due to differences in dry matter yield, a significant enhancement of metal uptake was observed in NTA-treated plants for Cu and Zn.

PubMed Disclaimer

Publication types

LinkOut - more resources