Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;37(11):672-9.
doi: 10.1055/s-2005-870577.

Short-term caloric restriction does not modify the in vivo insulin signaling pathway leading to Akt activation in skeletal muscle of Ames dwarf (Prop1(df)/Prop1(df)) mice

Affiliations

Short-term caloric restriction does not modify the in vivo insulin signaling pathway leading to Akt activation in skeletal muscle of Ames dwarf (Prop1(df)/Prop1(df)) mice

D P Argentino et al. Horm Metab Res. 2005 Nov.

Abstract

The purpose of this study was to analyze the interaction between caloric restriction (CR) and the dwarf mutation at the level of insulin sensitivity and signal transduction. To this end, we analyzed the in vivo status of the insulin signaling system in skeletal muscle from Ames dwarf (df/df) and normal mice fed ad libitum or subjected to short-term (20-day) CR. We measured insulin-stimulated phosphorylation of the IR and IRS-1, IRS-1-p85 association and Akt activation, and the abundance of the IR, IRS-1, p85, GLUT-4 and IGF-1 receptor in skeletal muscle. In terms of glucose homeostasis, the response to CR was different in both groups of animals. In normal animals, CR induced a significant reduction in both circulating insulin and glucose levels, while CR did not modify these parameters in df/df mice. We did not find any significant alteration in either activation or abundance of signaling molecules analyzed after short-term CR in either normal or Ames dwarf mice. We conclude that the initial adaptation to CR in normal mice is an increase in insulin sensitivity without changes in insulin signal transduction, and that this adaptation is not evidenced in df/df mice, probably since they are already hypersensitive to insulin.

PubMed Disclaimer

Similar articles

Cited by

Publication types