Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;100(4):355-64.
doi: 10.1263/jbb.100.355.

Production of conjugated fatty acids by lactic acid bacteria

Affiliations
Review

Production of conjugated fatty acids by lactic acid bacteria

Jun Ogawa et al. J Biosci Bioeng. 2005 Oct.

Abstract

Conjugated fatty acids have attracted much attention as a novel type of biologically beneficial functional lipid. Some isomers of conjugated linoleic acid (CLA) reduce carcinogenesis, atherosclerosis, and body fat. Considering the use of CLA for medicinal and nutraceutical purposes, a safe isomer-selective process is required. The introduction of biological reactions for CLA production could be an answer. We screened microbial reactions useful for CLA production, and found several unique reactions in lactic acid bacteria. Lactic acid bacteria produced CLA from linoleic acid. The produced CLA comprised a mixture of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. Lactobacillus plantarum AKU 1009a was selected as a potential CLA producer. Using washed cells of L. plantarum AKU 1009a as a catalyst, CLA production from linoleic acid reached 40 mg/ml under the optimized conditions. The CLA-producing reaction was found to consist of two successive reactions, i.e., hydration of linoleic acid to 10-hydroxy-12-octadecenoic acid and dehydrating isomerization of the hydroxy fatty acid to CLA. On the basis of these results, the transformation of hydroxy fatty acids by lactic acid bacteria was investigated. Lactic acid bacteria transformed ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) to CLA (a mixture of cis-9,trans-11-18:2 and trans-9,trans-11-18:2). Castor oil, which is rich in the triacylglycerol form of ricinoleic acid, was also found to act as a substrate for CLA production by lactic acid bacteria with the aid of lipase-catalyzed triacylglycerol hydrolysis. L. plantarum AKU 1009a produced conjugated trienoic fatty acids from alpha- and gamma-linolenic acid. The trienoic fatty acids produced from alpha-linolenic acid were identified as cis-9,trans-11,cis-15-octadecatrienoic acid (18:3) and trans-9,trans-11,cis-15-18:3. Those produced from gamma-linolenic were cis-6,cis-9,trans-11-18:3 and cis-6,trans-9,trans-11-18:3. The conjugated trienoic fatty acids produced from alpha- and gamma-linolenic acid were further saturated by L. plantarum AKU 1009a to trans-10,cis-15-18:2 and cis-6,trans-10-18:2, respectively.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources