Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;99(6):1324-9.
doi: 10.1111/j.1365-2672.2005.02729.x.

Interaction of air ions and bactericidal vapours to control micro-organisms

Affiliations

Interaction of air ions and bactericidal vapours to control micro-organisms

L F Gaunt et al. J Appl Microbiol. 2005.

Abstract

Aims: The aim of this study was to investigate the antibacterial activity of candles containing specific-antibacterial compounds, such as essential oils and their constituent compounds. The importance of the ionization products from the flame and the aerial concentration of the volatile compounds were investigated.

Methods and results: Agar plates inoculated with Escherichia coli (DH5alpha) or Staphylococcus aureus (NCTC strain number 8532) were exposed in a large air-tight chamber to candle flames combined with the volatile bactericidal compounds beta-pinene and orange oil. A steady decline in E. coli numbers was observed over time because of the effect of a candle flame. This was significantly increased by the addition of volatile oils. The number of S. aureus colonies was not reduced by a plain candle, but significant reductions were caused following exposure to beta-pinene and orange oil candles. As aerial concentration of the volatiles was increased the viability of E. coli and S. aureus declined. Ionization products from the flame made a significant contribution to the observed effects, as intercepting the ions on a grounded grid over the agar plates allowed at least 20% more cells to survive.

Conclusions: This study demonstrates the antibacterial properties of ionization products from a candle flame, and that this effect can be significantly increased by the addition of specific-antibacterial compounds, such as orange oil and beta-pinene. The role of both the ionization products from the candle flame and the concentration of volatile compounds released are important to the effect.

Significance and impact of the study: The technique described here offers a new and novel technique for reducing the concentration of bacteria on surfaces.

PubMed Disclaimer

Similar articles

Cited by