Functional organization of a Schwann cell enhancer
- PMID: 16319321
- PMCID: PMC6725644
- DOI: 10.1523/JNEUROSCI.2596-05.2005
Functional organization of a Schwann cell enhancer
Abstract
Myelin basic protein (MBP) gene expression is conferred in oligodendrocytes and Schwann cells by different upstream enhancers. In Schwann cells, expression is controlled by a 422 bp enhancer lying -9 kb from the gene. We show here that it contains 22 mammalian conserved motifs > or =6 bp. To investigate their functional significance, different combinations of wild-type or mutated motifs were introduced into reporter constructs that were inserted in single copy at a common hypoxanthine phosphoribosyltransferase docking site in embryonic stem cells. Lines of transgenic mice were derived, and the subsequent qualitative and quantitative expression phenotypes were compared at different stages of maturation. In the enhancer core, seven contiguous motifs cooperate to confer Schwann cell specificity while different combinations of flanking motifs engage, at different stages of Schwann cell maturation, to modulate expression level. Mutation of a Krox-20 binding site reduces the level of reporter expression, whereas mutation of a potential Sox element silences reporter expression. This potential Sox motif was also found conserved in other Schwann cell enhancers, suggesting that it contributes widely to regulatory function. These results demonstrate a close relationship between phylogenetic footprints and regulatory function and suggest a general model of enhancer organization. Finally, this investigation demonstrates that in vivo functional analysis, supported by controlled transgenesis, can be a robust complement to molecular and bioinformatics approaches to regulatory mechanisms.
Figures
References
-
- Bermingham Jr JR, Scherer SS, O'Connell S, Arroyo E, Kalla KA, Powell FL, Rosenfeld MG (1996) Tst-1/Oct-6/SCIP regulates a unique step in peripheral myelination and is required for normal respiration. Genes Dev 10: 1751-1762. - PubMed
-
- Bondurand N, Girard M, Pingault V, Lemort N, Dubourg O, Goossens M (2001) Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10. Hum Mol Genet 10: 2783-2795. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous