Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 1;65(23):10674-9.
doi: 10.1158/0008-5472.CAN-05-2827.

Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis

Affiliations

Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis

Andrea Bertotti et al. Cancer Res. .

Abstract

Cell multiplication in the absence of integrin-derived adhesive signals (anchorage-independent growth) is the phenotypic hallmark of neoplastic transformation. Therefore, the frequently observed up-regulation of some integrins in tumors has been interpreted as an epiphenomenon and not as a causative factor of oncogenic conversion. beta4 integrin stimulates proliferation and survival of epithelial cells and is overexpressed in human carcinomas, often in concomitance with up-regulation of the Met tyrosine kinase receptor for hepatocyte growth factor. Met is not endowed with transforming ability but can exploit the beta4 cytoplasmic tail as a substrate/adaptor for amplification of mitogenic and antiapoptotic responses, independently of cell adhesion. Here, we show that overexpression of beta4 is sufficient to transform rodent fibroblasts, enhances anchorage-independent growth of breast carcinoma cells, and induces tumorigenesis in nude mice; conversely, RNA interference-mediated depletion abrogates the transformed phenotype of neoplastic cells. These autonomous oncogenic properties are dramatically exacerbated upon Met coexpression, suggesting that the integrin can instigate the latent tumorigenic potential of the kinase. A beta4 nonadhesive variant still cooperates with Met for cellular transformation, confirming the adhesion-independent function of beta4 in magnification of Met biological effects. Conversely, a beta4 signaling-incompetent mutant that cannot be efficiently tyrosine phosphorylated by Met and displays reduced ability to activate phosphatidylinositol 3-kinase-dependent and Ras-dependent pathways aborts transformation. Our findings define beta4 as a signaling accomplice (a "servo-oncogene") of tyrosine kinase proto-oncogenes in primary carcinogenesis, evoke an unorthodox function for a prototypic adhesion molecule in the positive regulation of anchorage-independent growth, and suggest the use of beta4 as a target for anticancer therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources