Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 1;65(23):11118-28.
doi: 10.1158/0008-5472.CAN-04-3841.

Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells

Affiliations

Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells

Rita Nahta et al. Cancer Res. .

Erratum in

  • Cancer Res. 2008 Nov 15;68(22):9566

Abstract

The majority of breast cancer patients who achieve an initial therapeutic response to the human epidermal growth factor receptor 2 (HER-2)-targeted antibody trastuzumab will show disease progression within 1 year. We previously reported the characterization of SKBR3-derived trastuzumab-resistant pools. In the current study, we show that HER-2 interacts with insulin-like growth factor-I receptor (IGF-IR) uniquely in these resistant cells and not in the parental trastuzumab-sensitive cells. The occurrence of cross talk between IGF-IR and HER-2 exclusively in resistant cells is evidenced by the IGF-I stimulation resulting in increased phosphorylation of HER-2 in resistant cells, but not in parental cells, and by the inhibition of IGF-IR tyrosine kinase activity leading to decreased HER-2 phosphorylation only in resistant cells. In addition, inhibition of IGF-IR tyrosine kinase activity by I-OMe-AG538 increased sensitivity of resistant cells to trastuzumab. HER-2/IGF-IR interaction was disrupted on exposure of resistant cells to the anti-IGF-IR antibody alpha-IR3 and, to a lesser extent, when exposed to the anti-HER-2 antibody pertuzumab. Heterodimer disruption by alpha-IR3 dramatically restored sensitivity to trastuzumab and resistant cells showed a slightly increased sensitivity to pertuzumab versus parental cells. Neither alpha-IR3 nor pertuzumab decreased HER-2 phosphorylation, suggesting that additional sources of phosphorylation other than IGF-IR exist when HER-2 and IGF-IR are not physically bound. Our data support a unique interaction between HER-2 and IGF-IR in trastuzumab-resistant cells such that cross talk occurs between IGF-IR and HER-2. These data suggest that the IGF-IR/HER-2 heterodimer contributes to trastuzumab resistance and justify the need for further studies examining this complex as a potential therapeutic target in breast cancers that have progressed while on trastuzumab.

PubMed Disclaimer

Publication types

MeSH terms