Structural roles for human translation factor eIF3 in initiation of protein synthesis
- PMID: 16322461
- DOI: 10.1126/science.1118977
Structural roles for human translation factor eIF3 in initiation of protein synthesis
Abstract
Protein synthesis in mammalian cells requires initiation factor eIF3, a approximately 750-kilodalton complex that controls assembly of 40S ribosomal subunits on messenger RNAs (mRNAs) bearing either a 5'-cap or an internal ribosome entry site (IRES). Cryo-electron microscopy reconstructions show that eIF3, a five-lobed particle, interacts with the hepatitis C virus (HCV) IRES RNA and the 5'-cap binding complex eIF4F via the same domain. Detailed modeling of eIF3 and eIF4F onto the 40S ribosomal subunit reveals that eIF3 uses eIF4F or the HCV IRES in structurally similar ways to position the mRNA strand near the exit site of 40S, promoting initiation complex assembly.
Comment in
-
A picture says more than a thousand words: Structural insights into hepatitis C virus translation initiation.Hepatology. 2006 Dec;44(6):1687-90. doi: 10.1002/hep.21450. Hepatology. 2006. PMID: 17133497 No abstract available.
Similar articles
-
Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA.Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):16990-5. doi: 10.1073/pnas.0407402101. Epub 2004 Nov 24. Proc Natl Acad Sci U S A. 2004. PMID: 15563596 Free PMC article.
-
Structural and mechanistic insights into hepatitis C viral translation initiation.Nat Rev Microbiol. 2007 Jan;5(1):29-38. doi: 10.1038/nrmicro1558. Epub 2006 Nov 27. Nat Rev Microbiol. 2007. PMID: 17128284 Review.
-
Human initiation factor eIF3 subunit b interacts with HCV IRES RNA through its N-terminal RNA recognition motif.FEBS Lett. 2009 Jan 5;583(1):70-4. doi: 10.1016/j.febslet.2008.11.025. Epub 2008 Dec 6. FEBS Lett. 2009. PMID: 19059401
-
The pathway of HCV IRES-mediated translation initiation.Cell. 2004 Oct 29;119(3):369-80. doi: 10.1016/j.cell.2004.09.038. Cell. 2004. PMID: 15507208
-
Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites.C R Biol. 2005 Jul;328(7):589-605. doi: 10.1016/j.crvi.2005.02.004. C R Biol. 2005. PMID: 15992743 Review.
Cited by
-
Minding the message: tactics controlling RNA decay, modification, and translation in virus-infected cells.Genes Dev. 2022 Feb 1;36(3-4):108-132. doi: 10.1101/gad.349276.121. Genes Dev. 2022. PMID: 35193946 Free PMC article. Review.
-
Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29.Cell. 2013 May 23;153(5):1108-19. doi: 10.1016/j.cell.2013.04.036. Cell. 2013. PMID: 23706745 Free PMC article.
-
Topological models of heteromeric protein assemblies from mass spectrometry: application to the yeast eIF3:eIF5 complex.Chem Biol. 2015 Jan 22;22(1):117-28. doi: 10.1016/j.chembiol.2014.11.010. Epub 2014 Dec 24. Chem Biol. 2015. PMID: 25544043 Free PMC article.
-
RNA structural elements of hepatitis C virus controlling viral RNA translation and the implications for viral pathogenesis.Viruses. 2012 Oct 19;4(10):2233-50. doi: 10.3390/v4102233. Viruses. 2012. PMID: 23202462 Free PMC article. Review.
-
Sequential eukaryotic translation initiation factor 5 (eIF5) binding to the charged disordered segments of eIF4G and eIF2β stabilizes the 48S preinitiation complex and promotes its shift to the initiation mode.Mol Cell Biol. 2012 Oct;32(19):3978-89. doi: 10.1128/MCB.00376-12. Epub 2012 Jul 30. Mol Cell Biol. 2012. PMID: 22851688 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous