Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 Dec;22(11):2937-45.
doi: 10.1111/j.1460-9568.2005.04473.x.

Neuromagnetic correlates of visual motion coherence

Affiliations
Clinical Trial

Neuromagnetic correlates of visual motion coherence

J E Aspell et al. Eur J Neurosci. 2005 Dec.

Abstract

In order to characterize cortical responses to coherent motion we use magnetoencephalography (MEG) to measure human brain activity that is modulated by the degree of global coherence in a visual motion stimulus. Five subjects passively viewed two-phase motion sequences of sparse random dot fields. In the first (incoherent) phase the dots moved in random directions; in the second (coherent) phase a variable percentage of dots moved uniformly in one direction while the others moved randomly. We show that: (i) visual-motion-evoked magnetic fields, measured with a whole-scalp neuromagnetometer, reveal two transient events, within which we identify two significant peaks--the 'ON-M220' peak approximately 220 ms after the onset of incoherent motion and the 'TR-M230' peak, approximately 230 ms after the transition from incoherent to coherent motion; (ii) in lateral occipital channels, the TR-M230 peak amplitude varies with the percentage of motion coherence; (iii) two main sources are active in response to the transition from incoherent to coherent motion, the human medial temporal area complex/V3 accessory area (hMT+/V3A) and the superior temporal sulcus (STS), and (iv) these distinct areas show a similar, significant dependence of response strength and latency on motion coherence.

PubMed Disclaimer

Publication types

LinkOut - more resources