Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Oct;15(5):493-514.
doi: 10.1123/ijsnem.15.5.493.

Physiological role of carnosine in contracting muscle

Affiliations
Review

Physiological role of carnosine in contracting muscle

Gulshanara Begum et al. Int J Sport Nutr Exerc Metab. 2005 Oct.

Abstract

High-intensity exercise leads to reductions in muscle substrates (ATP, PCr6, and glycogen) and a subsequent accumulation of metabolites (ADP, P, H(+), and Mg(+)) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H(+) concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca(2+) and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date7comma; only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo.

PubMed Disclaimer

LinkOut - more resources