Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Nov;16(6):981-9.
doi: 10.1097/01.scs.0000179662.38172.dd.

Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon

Affiliations
Review

Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon

Barry L Eppley et al. J Craniofac Surg. 2005 Nov.

Abstract

Bone healing is a complex and multifactorial process. As such, there are numerous steps in the process to which intervention can be directed. This has given rise to many bone graft technologies that have been used to regenerate bone, creating, perhaps, a bewildering array of options. The options that surgeons have the most familiarity with are the ones that have been available the longest (i.e., autograft and allograft). Although useful for the widest spectrum of clinical applications, limitations of these grafts has prompted the development of new materials. Demineralized bone matrix formulations and synthetic ceramic materials are now being used with greater frequency. These biomaterials have demonstrated their usefulness in facial plastic and reconstructive surgery with their ability to augment and replace portions of the craniofacial skeleton. The purpose of this article is to describe and discuss the allograft and alloplastic bone grafting technologies so that the reader can consider each in the context of the others and gain a better appreciation for how each fits into the universe of existing and emerging treatments for bone regeneration.

PubMed Disclaimer

MeSH terms