Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar 1;52(1):115-28.
doi: 10.1016/j.femsec.2004.10.016. Epub 2004 Dec 19.

Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries

Affiliations
Free article
Comparative Study

Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries

Anne E Bernhard et al. FEMS Microbiol Ecol. .
Free article

Abstract

We analyzed bacterioplankton community structure in Tillamook Bay, Oregon and its tributaries to evaluate phylogenetic variability and its relation to changes in environmental conditions along an estuarine gradient. Using eubacterial primers, we amplified 16S rRNA genes from environmental DNA and analyzed the PCR products by length heterogeneity polymerase chain reaction (LH-PCR), which discriminates products based on naturally occurring length differences. Analysis of LH-PCR profiles by multivariate ordination methods revealed differences in community composition along the estuarine gradient that were correlated with changes in environmental variables. Microbial community differences were also detected among different rivers. Using partial 16S rRNA sequences, we identified members of dominant or unique gene fragment size classes distributed along the estuarine gradient. Gammaproteobacteria and Betaproteobacteria and members of the Bacteroidetes dominated in freshwater samples, while Alphaproteobacteria, Cyanobacteria and chloroplast genes dominated in marine samples. Changes in the microbial communities correlated most strongly with salinity and dissolved silicon, but were also strongly correlated with precipitation. We also identified specific gene fragments that were correlated with inorganic nutrients. Our data suggest that there is a significant and predictable change in microbial species composition along an estuarine gradient, shifting from a more complex community structure in freshwater habitats to a community more typical of open ocean samples in the marine-influenced sites. We also demonstrate the resolution and power of LH-PCR and multivariate analyses to provide a rapid assessment of major community shifts, and show how these shifts correlate with environmental variables.

PubMed Disclaimer

Publication types

LinkOut - more resources