Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 1;53(3):445-53.
doi: 10.1016/j.femsec.2005.02.009.

Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica

Affiliations
Free article

Lead and cadmium uptake in the marine fungi Corollospora lacera and Monodictys pelagica

Michael A S Taboski et al. FEMS Microbiol Ecol. .
Free article

Abstract

This study provides observations on the effects of lead and cadmium ions on the growth of two species of marine fungi, Corollospora lacera and Monodictys pelagica. On solid media lead appeared to have no effect on the radial rate of growth of fungi. Exposure to increasing cadmium concentrations on solid media resulted in significant reduction (p < 0.05) in the radial mycelial growth rates of both fungi, especially in M. pelagica. These results reveal significant difference in species sensitivity toward cadmium and, essentially, insensitivity toward lead exposure. In liquid cultures, the metal content of mycelia (metal mass found in mycelium, in mg), and the concentration of metal in dry mycelium (metal mass in 1g of mycelium, in mg g(-1)) were both found to increase (p < 0.05) with the increase in the metal cation concentration, while mycelium dry mass decreased. As it was observed on solid media, cadmium cation affected more severely (p < 0.05) the growth of M. pelagica in liquid cultures. Ergosterol content of mycelia of C. lacera exposed to increasing cadmium cation concentration decreased, similarly to the trend observed for dry mycelial mass. It was found that ca. 93% of all lead sequestered by C. lacera is located extracellularly. M. pelagica was found to bioaccumulate over 60 mg of cadmium and over 6 mg of lead per 1 g of mycelium, while C. lacera bioaccumulated over 7 mg of cadmium and up to 250 mg of lead per 1 g of mycelium. Overall, the results indicate that both metal ions affect the growth of marine fungi with lead being accumulated extracellularly in the mycelia. Both metals accumulated by fungi may then enter the marine ecosystem food web, of which marine fungi are integral members.

PubMed Disclaimer

Publication types