Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Dec;37(12):2120-5.
doi: 10.1249/01.mss.0000178106.68569.7e.

Effects of prolonged vibration on motor unit activity and motor performance

Affiliations
Review

Effects of prolonged vibration on motor unit activity and motor performance

Minoru Shinohara. Med Sci Sports Exerc. 2005 Dec.

Abstract

Excitatory input to the alpha motor neuron pool from Ia afferents is enhanced by brief vibration, yet is depressed when vibration is applied for prolonged periods. The purpose of this article is to synthesize recent findings from several studies on the effects of prolonged vibration on motor unit activity and motor performance during maximal and submaximal contractions in humans. Prolonged vibration does not alter voluntary drive during maximal contractions, but it does reduce Ia afferent input to alpha motor neuron pools and discharge rate of motor units in the vibrated muscles, leading to a reduction in maximal voluntary contraction force. Alterations in the activity of the motor unit pool may be variable across synergistic muscles due to potential neural connections between synergistic muscles. Prolonged vibration reduces the force fluctuations during submaximal steady contractions, presumably due to a depression of group Ia feedback from leg muscles. When prolonged vibration evokes a tonic vibration reflex in a hand muscle, the mean discharge rate of motor units during a submaximal force-matching contraction increases, leading to an increase in the associated force fluctuations. In summary, prolonged vibration modulates Ia feedback and motor unit activity, which leads to reduced peak force during maximal contractions and altered force fluctuations during submaximal contractions.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources