Determination of 13C CSA tensors: extension of the model-independent approach to an RNA kissing complex undergoing anisotropic rotational diffusion in solution
- PMID: 16331421
- DOI: 10.1007/s10858-005-3472-7
Determination of 13C CSA tensors: extension of the model-independent approach to an RNA kissing complex undergoing anisotropic rotational diffusion in solution
Abstract
Chemical shift anisotropy (CSA) tensor parameters have been determined for the protonated carbons of the purine bases in an RNA kissing complex in solution by extending the model-independent approach [Fushman, D., Cowburn, D. (1998) J. Am. Chem. Soc. 120, 7109-7110]. A strategy for determining CSA tensor parameters of heteronuclei in isolated X-H two-spin systems (X = 13C or 15N) in molecules undergoing anisotropic rotational diffusion is presented. The original method relies on the fact that the ratio kappa2=R2 auto/R2 cross of the transverse auto- and cross-correlated relaxation rates involving the X CSA and the X-H dipolar interaction is independent of parameters related to molecular motion, provided rotational diffusion is isotropic. However, if the overall motion is anisotropic kappa2 depends on the anisotropy D(parallel)/D (perpendicular) of rotational diffusion. In this paper, the field dependence of both kappa2 and its longitudinal counterpart kappa1=R1 auto/R1 cross are determined. For anisotropic rotational diffusion, our calculations show that the average kappa(av) = 1/2 (kappa1+kappa2), of the ratios is largely independent of the anisotropy parameter D(parallel)/D (perpendicular). The field dependence of the average ratio kappa(av) may thus be utilized to determine CSA tensor parameters by a generalized model-independent approach in the case of molecules with an overall motion described by an axially symmetric rotational diffusion tensor.
Similar articles
-
Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.J Am Chem Soc. 2006 Sep 6;128(35):11443-54. doi: 10.1021/ja061984g. J Am Chem Soc. 2006. PMID: 16939267
-
Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints.J Magn Reson. 2006 Apr;179(2):299-307. doi: 10.1016/j.jmr.2005.12.012. Epub 2006 Jan 23. J Magn Reson. 2006. PMID: 16431143
-
Cross correlations between 13C-1H dipolar interactions and 15N chemical shift anisotropy in nucleic acids.J Biomol NMR. 2003 Dec;27(4):365-75. doi: 10.1023/a:1025827017409. J Biomol NMR. 2003. PMID: 14512733
-
The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY.J Biomol NMR. 1999 Feb;13(2):139-47. doi: 10.1023/a:1008349331773. J Biomol NMR. 1999. PMID: 10070755
-
Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding.Prog Nucl Magn Reson Spectrosc. 2014 Feb;77:49-68. doi: 10.1016/j.pnmrs.2013.08.001. Epub 2013 Aug 28. Prog Nucl Magn Reson Spectrosc. 2014. PMID: 24411830 Review.
Cited by
-
DNA base order parameter determination without influence of chemical exchange.Methods. 2023 Feb;210:1-9. doi: 10.1016/j.ymeth.2022.12.004. Epub 2022 Dec 31. Methods. 2023. PMID: 36596431 Free PMC article.
-
Effect of local sugar and base geometry on 13C and 15N magnetic shielding anisotropy in DNA nucleosides.J Biomol NMR. 2008 Nov;42(3):209-23. doi: 10.1007/s10858-008-9278-7. Epub 2008 Oct 14. J Biomol NMR. 2008. PMID: 18853259
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources