Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;6(1):36-45.
doi: 10.1016/j.intimp.2005.07.008. Epub 2005 Aug 1.

Role of adenosine in airway inflammation in an allergic mouse model of asthma

Affiliations

Role of adenosine in airway inflammation in an allergic mouse model of asthma

Ming Fan et al. Int Immunopharmacol. 2006 Jan.

Abstract

In the present study, we examined dynamic changes in cellular profile of bronchoalveolar lavage (BAL) fluid after adenosine challenge in ragweed sensitized and challenged mice. Mice systemically sensitized and airway challenged with ragweed showed marked airway inflammation manifesting increased eosinophils, lymphocytes, neutrophils and activated macrophages in BAL. Adenosine challenge further enhanced influx of inflammatory cells into BAL, notably neutrophils from 1 to 72 h and eosinophils from 1 to 48 h time-points (p<0.05), which sharply rose at 6-h time-point following adenosine challenge. Greater infiltration of lymphocytes into BAL was observed at 1 and 72 h and macrophages from 6 to 72 h (p<0.05) after adenosine challenge. Accordingly, markers of eosinophils, neutrophils and mast cells were analyzed at 6-h time-point after adenosine challenge. Adenosine challenge significantly increased the levels of eosinophil peroxidase, neutrophil myeloperoxidase and beta-hexosaminidase in BAL. There were more significant effects of adenosine challenge on the degranulation of mast cells in the lung than that in blood. The chemoattractant, eotaxin, was detected in BAL, which increased after adenosine challenge. Theophylline, a non-specific adenosine receptor antagonist, prevented adenosine-enhanced infiltration of inflammatory cells and their respective markers. Our findings suggest that adenosine plays an important role in airway inflammation in an allergic mouse model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms