Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2005 Dec;82(6):1244-52.
doi: 10.1093/ajcn/82.6.1244.

Effects of 3 diets with various calcium contents on 24-h energy expenditure, fat oxidation, and adipose tissue message RNA expression of lipid metabolism-related proteins

Affiliations
Free article
Randomized Controlled Trial

Effects of 3 diets with various calcium contents on 24-h energy expenditure, fat oxidation, and adipose tissue message RNA expression of lipid metabolism-related proteins

Niels Boon et al. Am J Clin Nutr. 2005 Dec.
Free article

Abstract

Background: Evidence from molecular and animal research and epidemiologic investigations indicates that calcium intake may be inversely related to body weight, possibly through alterations in 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] metabolism.

Objective: We tested whether energy and substrate metabolism and adipose tissue enzyme messenger RNA (mRNA) expression can be altered by dietary calcium intake in healthy, nonobese, human volunteers consuming an isocaloric diet.

Design: Twelve healthy men [age: 28 +/- 2 y; body mass index (BMI; in kg/m(2)): 25.2 +/- 06] received 3 isocaloric diets [high calcium (1259 +/- 9 mg/d), high dairy (high/high); high calcium (1259 +/- 9 mg/d), low dairy (high/low); and low calcium (349 +/- 8 mg/d), low dairy (low/low)] in a randomized crossover design. At the end of the 7-d dietary periods, 24-h energy expenditure and substrate metabolism were measured, and fat biopsy specimens were obtained to determine mRNA expression in genes involved in the lipolytic and lipogenic pathways.

Results: The 24-h energy expenditure was 11.8 +/- 0.3, 11.6 +/- 0.3, and 11.7 +/- 0.3 MJ/24 h in the high/high, high/low, and low/low conditions, respectively. Fat oxidation in these conditions was 108 +/- 7, 105 +/- 9, and 100 +/- 6 g/24 h. These differences were not statistically significant. mRNA concentrations of UCP2, FAS, GPDH2, HSL, and PPARG did not differ significantly. Serum 1,25(OH)(2)D(3) concentrations changed from 175 +/- 16 to 138 +/- 15, 181 +/- 23 to 159 +/- 19, and 164 +/- 13 to 198 +/- 19 pmol/L in the high/high, high/low, and low/low conditions, respectively, and was significantly different between the high/high and low/low conditions (P < 0.05).

Conclusion: Altering the dietary calcium content for 7 d does not influence substrate metabolism, energy metabolism, or gene expression in proteins related to fat metabolism, despite significant changes in 1,25(OH)(2)D(3) concentrations.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources