Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose
- PMID: 16332806
- PMCID: PMC1317433
- DOI: 10.1128/AEM.71.12.8221-8227.2005
Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose
Abstract
Efficient bioconversion of glucose to phenol via the central metabolite tyrosine was achieved in the solvent-tolerant strain Pseudomonas putida S12. The tpl gene from Pantoea agglomerans, encoding tyrosine phenol lyase, was introduced into P. putida S12 to enable phenol production. Tyrosine availability was a bottleneck for efficient production. The production host was optimized by overexpressing the aroF-1 gene, which codes for the first enzyme in the tyrosine biosynthetic pathway, and by random mutagenesis procedures involving selection with the toxic antimetabolites m-fluoro-dl-phenylalanine and m-fluoro-l-tyrosine. High-throughput screening of analogue-resistant mutants obtained in this way yielded a P. putida S12 derivative capable of producing 1.5 mM phenol in a shake flask culture with a yield of 6.7% (mol/mol). In a fed-batch process, the productivity was limited by accumulation of 5 mM phenol in the medium. This toxicity was overcome by use of octanol as an extractant for phenol in a biphasic medium-octanol system. This approach resulted in accumulation of 58 mM phenol in the octanol phase, and there was a twofold increase in the overall production compared to a single-phase fed batch.
Figures



Similar articles
-
Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12.J Biotechnol. 2007 Oct 15;132(1):49-56. doi: 10.1016/j.jbiotec.2007.08.031. Epub 2007 Aug 23. J Biotechnol. 2007. PMID: 17900735
-
Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production.J Bacteriol. 2008 Apr;190(8):2822-30. doi: 10.1128/JB.01379-07. Epub 2007 Nov 9. J Bacteriol. 2008. PMID: 17993537 Free PMC article.
-
Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.Appl Environ Microbiol. 2009 Feb;75(4):931-6. doi: 10.1128/AEM.02186-08. Epub 2008 Dec 5. Appl Environ Microbiol. 2009. PMID: 19060171 Free PMC article.
-
The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.Appl Microbiol Biotechnol. 2005 Nov;69(2):170-7. doi: 10.1007/s00253-005-1973-7. Epub 2005 Nov 12. Appl Microbiol Biotechnol. 2005. PMID: 15824922
-
Research overview of L-DOPA production using a bacterial enzyme, tyrosine phenol-lyase.Proc Jpn Acad Ser B Phys Biol Sci. 2023;99(3):75-101. doi: 10.2183/pjab.99.006. Proc Jpn Acad Ser B Phys Biol Sci. 2023. PMID: 36908174 Free PMC article. Review.
Cited by
-
Benzoic acid fermentation from starch and cellulose via a plant-like β-oxidation pathway in Streptomyces maritimus.Microb Cell Fact. 2012 Apr 30;11:49. doi: 10.1186/1475-2859-11-49. Microb Cell Fact. 2012. PMID: 22545774 Free PMC article.
-
Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement.Appl Microbiol Biotechnol. 2010 Jun;87(2):679-90. doi: 10.1007/s00253-010-2626-z. Epub 2010 May 7. Appl Microbiol Biotechnol. 2010. PMID: 20449741 Free PMC article.
-
Facile Synthesis of Diatomite/β-Cyclodextrin Composite and Application for the Adsorption of Diphenolic Acid from Wastewater.Materials (Basel). 2022 Jun 29;15(13):4588. doi: 10.3390/ma15134588. Materials (Basel). 2022. PMID: 35806712 Free PMC article.
-
Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems.Chembiochem. 2022 Jan 5;23(1):e202100467. doi: 10.1002/cbic.202100467. Epub 2021 Dec 2. Chembiochem. 2022. PMID: 34750949 Free PMC article.
-
Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism.Appl Environ Microbiol. 2020 May 19;86(11):e03038-19. doi: 10.1128/AEM.03038-19. Print 2020 May 19. Appl Environ Microbiol. 2020. PMID: 32245760 Free PMC article.
References
-
- Adelberg, E. A., M. Mandel, and G. Chein Ching Chen. 1965. Optimal conditions for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine in Escherichia coli. Biochem. Biophys. Res. Commun. 18:788-795.
-
- Adewoye, L. O., L. Tschetter, J. O'Neil, and E. A. Worobec. 1998. Channel specificity and secondary structure of the glucose-inducible porins of Pseudomonas spp. J. Bioenerg. Biomembr. 30:257-267. - PubMed
-
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
-
- Arias-Barrau, E., E. R. Olivera, J. M. Luengo, C. Fernandez, B. Galan, J. L. Garcia, E. Diaz, and B. Minambres. 2004. The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. J. Bacteriol. 186:5062-5077. - PMC - PubMed
-
- Ausubel, F. M., R. Brent, R. E. Kingstom, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Greene Publishing Associates, New York, N.Y.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources