Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
- PMID: 16332810
- PMCID: PMC1317456
- DOI: 10.1128/AEM.71.12.8249-8256.2005
Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
Abstract
We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells . h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.
Figures





Similar articles
-
High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.Metab Eng. 2012 Jul;14(4):336-43. doi: 10.1016/j.ymben.2012.04.001. Epub 2012 Apr 13. Metab Eng. 2012. PMID: 22521925
-
Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity.Appl Environ Microbiol. 2003 Jan;69(1):495-503. doi: 10.1128/AEM.69.1.495-503.2003. Appl Environ Microbiol. 2003. PMID: 12514033 Free PMC article.
-
Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.FEMS Yeast Res. 2013 May;13(3):312-21. doi: 10.1111/1567-1364.12036. Epub 2013 Mar 4. FEMS Yeast Res. 2013. PMID: 23398717
-
Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant.Curr Genet. 1990 Dec;18(6):493-500. doi: 10.1007/BF00327019. Curr Genet. 1990. PMID: 2127555
-
[Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae].Sheng Wu Gong Cheng Xue Bao. 2003 Sep;19(5):636-40. Sheng Wu Gong Cheng Xue Bao. 2003. PMID: 15969099 Review. Chinese.
Cited by
-
The characterization of transaldolase gene tal from Pichia stipitis and its heterologous expression in Fusarium oxysporum.Mol Biol Rep. 2011 Mar;38(3):1831-40. doi: 10.1007/s11033-010-0299-4. Epub 2010 Sep 16. Mol Biol Rep. 2011. PMID: 20845075
-
A semi-quantitative high-throughput screening method for microbial L-tyrosine production in microtiter plates.J Ind Microbiol Biotechnol. 2007 Dec;34(12):807-11. doi: 10.1007/s10295-007-0257-x. Epub 2007 Oct 10. J Ind Microbiol Biotechnol. 2007. PMID: 17926073
-
Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery.Biotechnol Biofuels. 2020 Jan 22;13:12. doi: 10.1186/s13068-019-1641-2. eCollection 2020. Biotechnol Biofuels. 2020. PMID: 31993090 Free PMC article.
-
EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.J Ind Microbiol Biotechnol. 2015 Nov;42(11):1519-31. doi: 10.1007/s10295-015-1684-8. Epub 2015 Sep 16. J Ind Microbiol Biotechnol. 2015. PMID: 26376869 Free PMC article.
-
Metabolic Engineering of Komagataella phaffii for Xylose Utilization from Cellulosic Biomass.Molecules. 2024 Dec 2;29(23):5695. doi: 10.3390/molecules29235695. Molecules. 2024. PMID: 39683854 Free PMC article.
References
-
- Alper, H., Y. S. Jin, J. F. Moxley, and G. Stephanopoulos. 2005. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7:155-164. - PubMed
-
- Alper, H., K. Miyaoku, and G. Stephanopoulos. 2005. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23:612-616. - PubMed
-
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
-
- Badarinarayana, V., P. W. Estep, 3rd, J. Shendure, J. Edwards, S. Tavazoie, F. Lam, and G. M. Church. 2001. Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19:1060-1065. - PubMed
-
- Bailey, J. E., A. Sburlati, V. Hatzimanikatis, K. Lee, W. A. Renner, and P. S. Tsai. 2002. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng. 79:568-579. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases