Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov-Dec;4(6):2257-65.
doi: 10.1021/pr050159g.

Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicilin, kanamycin, and tetracycline resistance

Affiliations

Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Pseudomonas aeruginosa responding to ampicilin, kanamycin, and tetracycline resistance

Xuanxian Peng et al. J Proteome Res. 2005 Nov-Dec.

Abstract

Nosocomial wound infections by antibiotic-resistant Pseudomonas aeruginosa strains have increasing importance in hospitals. Outer membrane proteins of the bacterium have strong influence on its resistance to antibiotics. In the current study, a parallel proteomic approach was applied to analysis of sarcosine-insoluble outer membrane fraction of P. aeruginosa responding to ampicilin, kanamycin and tetracycline resistances. Eleven differential proteins with 15 spots were determined and then identified by MALDI-TOF/MS, in which four with increased OprF, MexA, OmpH, and decreased hypothetical protein (NCBI No. 15599856), six with increased OprF, OmpH, hypothetical protein (NCBI No. 15599183) and decreased OprG, MexA, conserved hypothetical protein (NCBI No. 15600371), and eight with increased OprF, MexA, OprL, probable Omp (NCBI No. 15599856), probable secretion protein (NCBI No. 15600167), OprD and decreased OprG, conserved hypothetical protein (NCBI No. 15600371) responded to ampicilin, kanamycin, and tetracycline resistances, respectively. With the exception of OprF, the other differential proteins did not show the same behaviors against the three antibiotic resistances. Compared with our previous report on E. coli Omps responding to ampicilin and tetracycline resistances, which was only a protein difference in quality between the two antibiotics, P. aeruginosa showed significant diversity against the three antibiotics. Our findings might provide valuable data for an understanding of antibiotic-resistant difference between different species of bacteria. Meanwhile, these proteins shared by different bacteria or a bacterium against different antibiotics may provide universal targets for the development of new drugs that control antibiotic-resistant bacteria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources