Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Dec;5(6):1031-40.
doi: 10.1586/14737140.5.6.1031.

Molecularly targeted therapy in renal cell carcinoma

Affiliations
Review

Molecularly targeted therapy in renal cell carcinoma

W Kimryn Rathmell et al. Expert Rev Anticancer Ther. 2005 Dec.

Abstract

Recent developments in the molecular biology of renal cell carcinoma have identified multiple pathways associated with the development of this cancer. Multiple strategies have been investigated targeting these pathways, with significant clinical benefits shown in early studies. This review aims to overview the findings of recent clinical trials and clarify the development of these compounds for use in renal cell carcinoma. The authors also aim to clarify the molecular pathways implicated in renal cell carcinoma and the clinical results in metastatic renal cell carcinoma with agents targeting these pathways. The relevant literature was reviewed concerning pathways implicated in the pathophysiology of renal cell carcinoma including pathways activated secondary to von Hippel-Lindau gene inactivation and PI-3 kinase/Akt/mammalian target of rapamycin pathway activation. Therapeutic targeting based upon underlying molecular biology in renal cell carcinoma has strong rationale. Substantial clinical activity has been reported with various agents targeting these pathways, most notably with vascular endothelial growth factor-targeted therapy. However, investigation is needed to optimally utilize these agents at the appropriate stage of disease and in the best combinations for maximal clinical benefit.

PubMed Disclaimer

MeSH terms

Substances