Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov-Dec;6(6):405-24.
doi: 10.1111/j.1526-4637.2005.00076.x.

Electric and thermal field effects in tissue around radiofrequency electrodes

Affiliations

Electric and thermal field effects in tissue around radiofrequency electrodes

Eric R Cosman Jr et al. Pain Med. 2005 Nov-Dec.

Abstract

Objective: A study is carried out of the spatial distribution and time dependence of electric and thermal fields in the tissue around a radiofrequency (RF) electrode used in pain therapy. Finite-element calculation of the fields is performed, and results are compared with ex vivo tissue data. Field predictions are made for continuous and for pulsed RF applications.

Design: A special RF cannula electrode is constructed with both macro and micro thermocouple sensors to measure both average and rapid, transitory temperature effects. Temperatures and impedances are recorded in liver and egg-white models using signal outputs from a commercially available RF lesion generator. These data are compared with the results of finite-element calculations using electric field equations and the bio-heat equation.

Results: Average and pulsatory temperatures at the RF electrode are measured. Rapid temperature spikes during pulsed RF bursts are observed. These data compared well with theoretical calculations using known electrical and thermal tissue parameters.

Conclusion: Continuous RF lesioning causes heat destruction of neurons. Pulsed RF lesioning (PRFL) produces heat bursts with temperatures in the range associated with destructive heat lesions. PRFL also produces very high electric fields that may be capable of disrupting neuronal membranes and function. Finite-element calculations agree substantially with the measured data, giving confidence to their predictions of fields around the RF electrode.

PubMed Disclaimer