Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan;27(1):25-32.
doi: 10.1016/j.tips.2005.11.008. Epub 2005 Dec 7.

Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels

Affiliations
Review

Ca2+ signaling microdomains:platforms for the assembly and regulation of TRPC channels

Indu S Ambudkar. Trends Pharmacol Sci. 2006 Jan.

Abstract

The transient receptor potential canonical family (TRPC1-TRPC7) of ion channel proteins, which are activated in response to agonist-stimulated phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] hydrolysis, are proposed components of the elusive store-operated Ca(2+) (SOC) channel. TRPC channels display distinct properties and interact to form homomeric or heteromeric channels that differ in their function and regulation. Although the exact function of TRPC channels and how they are regulated has not been established, increasing data suggest that they are localized and regulated within Ca(2+) signaling microdomains. TRPC channels contribute to store-operated and store-independent Ca(2+) entry mechanisms, both of which are activated by agonist-stimulated PtdIns(4,5)P(2) hydrolysis. Elucidation of how cells achieve specificity and precise temporal and spatial coordination of channel activation is crucial for understanding the molecular basis of agonist-mediated stimulation of Ca(2+) entry and identifying downstream physiological functions. This review will address the assembly and localization of TRPC channels and how these processes impact their function.

PubMed Disclaimer

Publication types

LinkOut - more resources