Cell proliferation depends on mitochondrial Ca2+ uptake: inhibition by salicylate
- PMID: 16339178
- PMCID: PMC1805645
- DOI: 10.1113/jphysiol.2005.100586
Cell proliferation depends on mitochondrial Ca2+ uptake: inhibition by salicylate
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx pathway involved in control of multiple cellular and physiological processes including cell proliferation. Recent evidence has shown that SOCE depends critically on mitochondrial sinking of entering Ca2+ to avoid Ca2+-dependent inactivation. Thus, a role of mitochondria in control of cell proliferation could be anticipated. We show here that activation of SOCE induces cytosolic high [Ca2+] domains that are large enough to be sensed and avidly taken up by a pool of nearby mitochondria. Prevention of mitochondrial clearance of the entering Ca2+ inhibited both SOCE and cell proliferation in several cell types including Jurkat and human colon cancer cells. In addition, we find that therapeutic concentrations of salicylate, the major metabolite of aspirin, depolarize partially mitochondria and inhibit mitochondrial Ca2+ uptake, as revealed by mitochondrial Ca2+ measurements with targeted aequorins. This salicylate-induced inhibition of mitochondrial Ca2+ sinking prevented SOCE and impaired cell growth of Jurkat and human colon cancer cells. Finally, direct blockade of SOCE by the pyrazole derivative BTP-2 was sufficient to arrest cell growth. Taken together, our results reveal that cell proliferation depends critically on mitochondrial Ca2+ uptake and suggest that inhibition of tumour cell proliferation by salicylate may be due to interference with mitochondrial Ca2+ uptake, which is essential for sustaining SOCE. This novel mechanism may contribute to explaining the reported anti-proliferative and anti-tumoral actions of aspirin and dietary salicylates.
Figures
References
-
- Aceves M, Dueñas A, Gómez C, San Vicente E, Sánchez Crespo M, García-Rodríguez C. A new pharmacological effect of salicylates, inhibition of NFAT-dependent transcription. J Immunol. 2004;173:5721–5729. - PubMed
-
- Alvarez J, Montero M. Ca2+ measurements with luminescent proteins in the endoplasmic reticulum. In: Petersen OH, editor. Measuring Calcium and Calmodulin Inside and Outside Cells. Berlin: Springer Laboratory Manual, Springer; 2001. pp. 147–163.
-
- Alvarez J, Montero M, García-Sancho J. Agonist-induced Ca2+ influx in human neutrophils is not mediated by production of inositol polyphosphates but by emptying of the intracellular Ca2+ stores. Biochem Soc Transact. 1994;22:809–813. - PubMed
-
- Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–899. - PubMed
-
- Bernardi P. Mitochondrial transport of cations: channels, exchangers and permeability transition. Physiol Rev. 1999;79:1127–1155. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous