Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147
- PMID: 16339304
- PMCID: PMC1317978
- DOI: 10.1073/pnas.0509371102
Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147
Abstract
As a general rule, ribosomally synthesized polypeptides contain amino acids only in the L-isoform in an order dictated by the coding DNA/RNA. Two of a total of only four examples of L to D conversions in prokaryotic systems occur in posttranslationally modified antimicrobial peptides called lantibiotics. In both examples (lactocin S and lacticin 3147), ribosomally encoded L-serines are enzymatically converted to D-alanines, giving rise to an apparent mistranslation of serine codons to alanine residues. It has been suggested that this conversion results from a two-step reaction initiated by a lantibiotic synthetase converting the gene-encoded L-serine to dehydroalanine (dha). By using lacticin 3147 as a model system, we report the identification of an enzyme, LtnJ, that is responsible for the conversion of dha to D-alanine. Deletion of this enzyme results in the residues remaining as dha intermediates, leading to a dramatic reduction in the antimicrobial activity of the producing strain. The importance of the chirality of the three D-alanines present in lacticin 3147 was confirmed when these residues were systematically substituted by L-alanines. In addition, substitution with L-threonine (ultimately modified to dehydrobutyrine), glycine, or L-valine also resulted in diminished peptide production and/or relative activity, the extent of which depended on the chirality of the newly incorporated amino acid(s).
Figures



Similar articles
-
Lantibiotic Reductase LtnJ Substrate Selectivity Assessed with a Collection of Nisin Derivatives as Substrates.Appl Environ Microbiol. 2015 Jun;81(11):3679-87. doi: 10.1128/AEM.00475-15. Epub 2015 Mar 20. Appl Environ Microbiol. 2015. PMID: 25795677 Free PMC article.
-
Homologues and bioengineered derivatives of LtnJ vary in ability to form D-alanine in the lantibiotic lacticin 3147.J Bacteriol. 2012 Feb;194(3):708-14. doi: 10.1128/JB.06185-11. Epub 2011 Nov 28. J Bacteriol. 2012. PMID: 22123251 Free PMC article.
-
In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide.J Biol Chem. 1994 Nov 4;269(44):27183-5. J Biol Chem. 1994. PMID: 7961627
-
Bioengineering of the model lantibiotic nisin.Bioengineered. 2015;6(4):187-92. doi: 10.1080/21655979.2015.1049781. Epub 2015 May 13. Bioengineered. 2015. PMID: 25970137 Free PMC article. Review.
-
The biology of lantibiotics from the lacticin 481 group is coming of age.FEMS Microbiol Rev. 2007 Mar;31(2):134-67. doi: 10.1111/j.1574-6976.2006.00045.x. Epub 2006 Nov 9. FEMS Microbiol Rev. 2007. PMID: 17096664 Review.
Cited by
-
Lantibiotic Reductase LtnJ Substrate Selectivity Assessed with a Collection of Nisin Derivatives as Substrates.Appl Environ Microbiol. 2015 Jun;81(11):3679-87. doi: 10.1128/AEM.00475-15. Epub 2015 Mar 20. Appl Environ Microbiol. 2015. PMID: 25795677 Free PMC article.
-
Mechanistic dissection of the enzyme complexes involved in biosynthesis of lacticin 3147 and nisin.Appl Environ Microbiol. 2008 Nov;74(21):6591-7. doi: 10.1128/AEM.01334-08. Epub 2008 Sep 12. Appl Environ Microbiol. 2008. PMID: 18791001 Free PMC article.
-
RiPPing apart the rules for peptide natural products.Synth Syst Biotechnol. 2018 Apr 5;3(2):81-82. doi: 10.1016/j.synbio.2018.03.002. eCollection 2018 Jun. Synth Syst Biotechnol. 2018. PMID: 29900419 Free PMC article. No abstract available.
-
Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V.Microb Biotechnol. 2010 Jul;3(4):473-86. doi: 10.1111/j.1751-7915.2010.00184.x. Microb Biotechnol. 2010. PMID: 21255345 Free PMC article.
-
Investigating the importance of charged residues in lantibiotics.Bioeng Bugs. 2010 Sep-Oct;1(5):345-51. doi: 10.4161/bbug.1.5.12353. Bioeng Bugs. 2010. PMID: 21326835 Free PMC article.
References
-
- Heck, S. D., Siok, C. J., Krapcho, K. J., Kelbaugh, P. R., Thadeio, P. F., Welch, M. J., Williams, R. D., Ganong, A. H., Kelly, M. E., Lanzetti, A. J., et al. (1994) Science 266, 1065-1068. - PubMed
-
- Murkin, A. S. & Tanner, M. E. (2002) J. Org. Chem. 67, 8389-8394. - PubMed
-
- Kreil, G. (1994) J. Biol. Chem. 269, 10967-10970. - PubMed
-
- Hong, S. Y., Oh, J. E. & Lee, K. H. (1999) Biochem. Pharmacol. 58, 1775-1780. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials