Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan;290(1):F4-13.
doi: 10.1152/ajprenal.00045.2005.

Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction

Affiliations
Free article
Review

Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction

Neil G Docherty et al. Am J Physiol Renal Physiol. 2006 Jan.
Free article

Abstract

Ureteric obstruction is frequently encountered in primary care urology and can lead to damage to the ipsilateral kidney. Relief of all types of obstruction generally leads to the normalization of any deterioration in renal function noted at diagnosis. However, some evidence from animal models suggests that obstruction can cause progressive deleterious effects on renal function and blood pressure control, especially in the presence of preexisting pathologies such as essential hypertension. The last 10 years have seen a proliferation of studies in rodents wherein complete unilateral ureteric obstruction has been used as a model of renal fibrosis. However, the relevance of the findings to human obstructive uropathy has, in many cases, not been the primary aim. In this review, we outline the major events linking damage to the renal parenchyma and cell death to the evolution of fibrosis following obstruction. Special focus is given to the role of apoptosis as a major cause of cell death during and post-complete ureteric obstruction. Several interventions that reduce tubular apoptosis are discussed in terms of their ability to prevent subsequent progression to end-organ damage and fibrosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources