Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;137(4):1087-106.
doi: 10.1016/j.neuroscience.2005.10.029. Epub 2005 Dec 15.

Grouping of brain rhythms in corticothalamic systems

Affiliations
Review

Grouping of brain rhythms in corticothalamic systems

M Steriade. Neuroscience. 2006.

Abstract

Different brain rhythms, with both low-frequency and fast-frequency, are grouped within complex wave-sequences. Instead of dissecting various frequency bands of the major oscillations that characterize the brain electrical activity during states of vigilance, it is conceptually more rewarding to analyze their coalescence, which is due to neuronal interactions in corticothalamic systems. This concept of unified brain rhythms does not only include low-frequency sleep oscillations but also fast (beta and gamma) activities that are not exclusively confined to brain-activated states, since they also occur during slow-wave sleep. The major factor behind this coalescence is the cortically generated slow oscillation that, through corticocortical and corticothalamic drives, is effective in grouping other brain rhythms. The experimental evidence for unified oscillations derived from simultaneous intracellular recordings of cortical and thalamic neurons in vivo, while recent studies in humans using global methods provided congruent results of grouping different types of slow and fast oscillatory activities. Far from being epiphenomena, spontaneous brain rhythms have an important role in synaptic plasticity. The role of slow-wave sleep oscillation in consolidating memory traces acquired during wakefulness is being explored in both experimental animals and human subjects. Highly synchronized sleep oscillations may develop into seizures that are generated intracortically and lead to inhibition of thalamocortical neurons, via activation of thalamic reticular neurons, which may explain the obliteration of signals from the external world and unconsciousness during some paroxysmal states.

PubMed Disclaimer

Publication types

LinkOut - more resources