Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion
- PMID: 16344558
- PMCID: PMC1356130
- DOI: 10.1101/gr.3936206
Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion
Abstract
Although more than 200 human spliceosomal and splicing-associated proteins are known, the evolution of the splicing machinery has not been studied extensively. The recent near-complete sequencing and annotation of distant vertebrate and chordate genomes provides the opportunity for an exhaustive comparative analysis of splicing factors across eukaryotes. We describe here our semiautomated computational pipeline to identify and annotate splicing factors in representative species of eukaryotes. We focused on protein families whose role in splicing is confirmed by experimental evidence. We visually inspected 1894 proteins and manually curated 224 of them. Our analysis shows a general conservation of the core spliceosomal proteins across the eukaryotic lineage, contrasting with selective expansions of protein families known to play a role in the regulation of splicing, most notably of SR proteins in metazoans and of heterogeneous nuclear ribonucleoproteins (hnRNP) in vertebrates. We also observed vertebrate-specific expansion of the CLK and SRPK kinases (which phosphorylate SR proteins), and the CUG-BP/CELF family of splicing regulators. Furthermore, we report several intronless genes amongst splicing proteins in mammals, suggesting that retrotransposition contributed to the complexity of the mammalian splicing apparatus.
Figures




Similar articles
-
Comprehensive database and evolutionary dynamics of U12-type introns.Nucleic Acids Res. 2020 Jul 27;48(13):7066-7078. doi: 10.1093/nar/gkaa464. Nucleic Acids Res. 2020. PMID: 32484558 Free PMC article.
-
Complex evolutionary relationships among four classes of modular RNA-binding splicing regulators in eukaryotes: the hnRNP, SR, ELAV-like and CELF proteins.J Mol Evol. 2012 Dec;75(5-6):214-28. doi: 10.1007/s00239-012-9533-0. Epub 2012 Nov 24. J Mol Evol. 2012. PMID: 23179353
-
Variant snRNPs: New players within the spliceosome system.RNA Biol. 2018 Jan 2;15(1):17-25. doi: 10.1080/15476286.2017.1373238. Epub 2017 Oct 11. RNA Biol. 2018. PMID: 28876172 Free PMC article. Review.
-
Spliceosomal genes in the D. discoideum genome: a comparison with those in H. sapiens, D. melanogaster, A. thaliana and S. cerevisiae.Protein Cell. 2011 May;2(5):395-409. doi: 10.1007/s13238-011-1052-z. Epub 2011 Jun 12. Protein Cell. 2011. PMID: 21667333 Free PMC article.
-
Pre-mRNA splicing: awash in a sea of proteins.Mol Cell. 2003 Jul;12(1):5-14. doi: 10.1016/s1097-2765(03)00270-3. Mol Cell. 2003. PMID: 12887888 Review.
Cited by
-
In vitro characterization of the RS motif in N-terminal head domain of goldfish germinal vesicle lamin B3 necessary for phosphorylation of the p34cdc2 target serine by SRPK1.FEBS Open Bio. 2013 Mar 29;3:165-76. doi: 10.1016/j.fob.2013.03.003. Print 2013. FEBS Open Bio. 2013. PMID: 23772390 Free PMC article.
-
Single molecule, long-read Apoer2 sequencing identifies conserved and species-specific splicing patterns.Genomics. 2022 Mar;114(2):110318. doi: 10.1016/j.ygeno.2022.110318. Epub 2022 Feb 19. Genomics. 2022. PMID: 35192893 Free PMC article.
-
RNA binding proteins in the regulation of heart development.Int J Biochem Cell Biol. 2013 Nov;45(11):2467-78. doi: 10.1016/j.biocel.2013.08.008. Epub 2013 Aug 20. Int J Biochem Cell Biol. 2013. PMID: 23973289 Free PMC article. Review.
-
The genetic landscape of high-risk neuroblastoma.Nat Genet. 2013 Mar;45(3):279-84. doi: 10.1038/ng.2529. Epub 2013 Jan 20. Nat Genet. 2013. PMID: 23334666 Free PMC article.
-
Incorporating evolutionary information and functional domains for identifying RNA splicing factors in humans.PLoS One. 2011;6(11):e27567. doi: 10.1371/journal.pone.0027567. Epub 2011 Nov 16. PLoS One. 2011. PMID: 22110674 Free PMC article.
References
-
- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215 403-410. - PubMed
-
- Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, J., Prince, V., Wang, Y.L., et al. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282 1711-1714. - PubMed
-
- Antony, A., Tang, Y.S., Khan, R.A., Biju, M.P., Xiao, X., Li, Q.J., Sun, X.L., Jayaram, H.N., and Stabler, S.P. 2004. Translational upregulation of folate receptors is mediated by homocysteine via RNA-heterogeneous nuclear ribonucleoprotein E1 interactions. J. Clin. Invest. 113 285-301. - PMC - PubMed
-
- Aparicio, S., Chapman, J., Stupka, E., Putnam, N., Chia, J.M., Dehal, P., Christoffels, A., Rash, S., Hoon, S., Smit, A., et al. 2002. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297 1301-1310. - PubMed
-
- Ast, G. 2004. How did alternative splicing evolve? Nat. Rev. Genet. 5 773-782. - PubMed
Web site references
-
- http://www.ensembl.org; Ensembl.
-
- http://www.ebi.ac.uk/Wise2; Wise2—Intelligent algorithms for DNA searches (EBI).
-
- http://woody.embl-heidelberg.de/gene2est; Gene2EST BLAST Server.
-
- http://www.ncbi.nlm.nih.gov/BLAST; NCBI BLAST.
-
- http://www.es.embnet.org/Doc/SNAP; SNAP.pl (Synonymous Nonsynonymous Analysis Program).
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials