Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;77(1):11-8.
doi: 10.1002/jbm.a.30593.

Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro

Affiliations

Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro

Qiang Ao et al. J Biomed Mater Res A. 2006 Apr.

Abstract

Multimicrotubule chitosan conduits (M-conduits) were fabricated using novel molds and a thermal-induced phase-separation technique. Hollow chitosan conduits (H-conduits) with an inner diameter of 1-5 mm and a wall thickness of 0.2-1.0 mm were made, and then a novel mold composed of a styrofoam insulating pedestal with several holes and a stainless steel cover plate was used to make M-conduits. In brief, corresponding H-conduits were inserted upright into the holes of the styrofoam pedestal, and filled with chitosan solution, then rapidly covered with the precooled stainless steel cover plate, and then placed in a freezer. The styrofoam insulating pedestal enclosing the conduits could reduce the heat transfer through the side wall of the conduits. Gradual phase separation then occurred uniaxially in the presence of a unidirectional temperature gradient from the top end to the bottom end of the chitosan conduits. The phase-separated polymer/solvent systems were then dried in a freeze-dryer. The microtubule diameters were controlled by adjusting the polymer concentration and cooling temperature. In vitro characterization demonstrated that the mold-based multimicrotubule chitosan conduits possessed suitable mechanical strength, microtubule diameter distribution, porosity, swelling, biodegradability, and nerve cell affinity, and so they showed potential for application as nerve tissue engineering scaffolds.

PubMed Disclaimer

Publication types

LinkOut - more resources