Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Nov;28(11):1069-78.
doi: 10.1177/039139880502801104.

Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices

Affiliations
Review

Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices

V Vadyvaloo et al. Int J Artif Organs. 2005 Nov.

Abstract

Staphylococcus epidermidis is an opportunistic pathogen associated with foreign body infections and nosocomial sepsis. The pathogenicity of S. epidermidis is mostly due to its ability to colonize indwelling polymeric devices and form a thick, multilayered biofilm. Biofilm formation is a major problem in treating S. epidermidis infection as biofilms provide significant resistance to antibiotics and to components of the innate host defenses. Various cell surface associated bacterial factors play a role in adherence and accumulation of the biofilm such as the polysaccharide intercellular adhesin and the autolysin AtlE. Furthermore, recent studies have shown that global regulators such as the agr quorum sensing system, the transcriptional regulator sarA and the alternative sigma factor sigB have an important function in the regulation of biofilm formation. Understanding the many complex mechanisms involved in biofilm formation is a key factor in the search for new anti-staphylococcal therapeutics.

PubMed Disclaimer

MeSH terms

LinkOut - more resources