Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;290(5):C1355-63.
doi: 10.1152/ajpcell.00501.2005. Epub 2005 Dec 14.

Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration

Affiliations

Modest dietary K+ restriction provokes insulin resistance of cellular K+ uptake and phosphorylation of renal outer medulla K+ channel without fall in plasma K+ concentration

Pei Chen et al. Am J Physiol Cell Physiol. 2006 May.

Abstract

Extracellular K(+) concentration ([K(+)]) is closely regulated by the concerted regulatory responses of kidney and muscle. In this study, we aimed to define the responses activated when dietary K(+) was moderately reduced from a control diet (1.0% K(+)) to a 0.33% K(+) diet for 15 days. Although body weight and baseline plasma [K(+)] (4.0 mM) were not reduced in the 0.33% K(+) group, regulatory responses to conserve plasma [K(+)] were evident in both muscle and kidney. Insulin-stimulated clearance of K(+) from the plasma was estimated in vivo in conscious rats with the use of tail venous and arterial cannulas. During infusion of insulin.(50 mU.kg(-1).min(-1)), plasma [K(+)] level fell to 3.2 +/- 0.1 mM in the 1.0% K(+) diet group and to only 3.47 +/- 0.07 mM in the 0.33% K(+) diet group (P < 0.01) with no reduction in urinary K(+) excretion, which is evidence of insulin resistance to cellular K(+) uptake. Insulin-stimulated cellular K(+) uptake was quantitated by measuring the K(+) infusion rate necessary to clamp plasma K(+) at baseline (in micromol.kg(-1).min(-1)) during 5 mU of insulin.kg(-1).min(-1) infusion: 9.7 +/- 1.5 in 1% K(+) diet was blunted to 5.2 +/- 1.7 in the 0.33% K(+) diet group (P < 0.001). Muscle [K(+)] and Na(+)-K(+)-ATPase activity and abundance were unchanged during the 0.33% K(+) diet. Renal excretion, which was measured overnight in metabolic cages, was reduced by 80%, from 117.6 +/- 10.5 micromol/h/animal (1% K(+) diet) to 24.2 +/- 1.7 micromol/h/animal (0.33% K(+) diet) (P < 0.001). There was no significant change in total abundance of key renal K(+) transporters, but 50% increases in both renal PTK cSrc abundance and ROMK phosphorylation in the 0.33% K(+) vs. 1% K(+) diet group, previously established to be associated with internalization of ROMK. These results indicate that plasma [K(+)] can be maintained during modest K(+) restriction due to a decrease in insulin-stimulated cellular K(+) uptake as well as renal K(+) conservation mediated by inactivation of ROMK, both without a detectable change in plasma [K(+)]. The error signals inciting and maintaining these responses remain to be identified.

PubMed Disclaimer

Publication types

LinkOut - more resources