Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;12(12):1269-79.
doi: 10.1016/j.chembiol.2005.09.010.

Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity

Affiliations

Microtubule interactions with chemically diverse stabilizing agents: thermodynamics of binding to the paclitaxel site predicts cytotoxicity

Rubén M Buey et al. Chem Biol. 2005 Dec.

Abstract

The interactions of microtubules with most compounds described as stabilizing agents have been studied. Several of them (lonafarnib, dicumarol, lutein, and jatrophane polyesters) did not show any stabilizing effect on microtubules. Taccalonolides A and E show paclitaxel-like effects in cells, but they were not able to modulate in vitro tubulin assembly or to bind microtubules, which suggests that other factors are involved in their cellular effects. The binding constants of epothilones, eleutherobin, discodermolide, sarcodictyins, 3,17beta-diacetoxy-2-ethoxy-6-oxo-B-homo-estra-1,3,5(10)-triene, and dictyostatin to the paclitaxel site; the critical concentrations of ligand-induced assembly; and their cytotoxicity in carcinoma cells have been measured, and correlations between these parameters have been determined. The inhibition of cell proliferation correlates better with the binding enthalpy change than with the binding constants, suggesting that large, favorable enthalpic contribution to the binding is desired to design paclitaxel site drugs with higher cytotoxicity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources