Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 15;65(24):11292-6.
doi: 10.1158/0008-5472.CAN-05-2148.

Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells

Affiliations

Checkpoint abrogation in G2 compromises repair of chromosomal breaks in ataxia telangiectasia cells

Georgia I Terzoudi et al. Cancer Res. .

Abstract

Checkpoint abrogation in G(2) compromises repair of DNA double-strand breaks (DSB) and confers enhanced G(2) chromosomal radiosensitivity in ataxia telangiectasia (AT) cells. To directly test this hypothesis, we combined calyculin A-induced premature chromosome condensation with conventional cytogenetics to evaluate chromosome damage before and after the G(2) checkpoint in irradiated primary AT and normal human lymphocytes and their lymphoblastoid derivatives. Direct analysis of radiation damage in G(2) by premature chromosome condensation reveals practically indistinguishable levels of chromosomal breaks in AT and normal cells. Yet a 4-fold increase in metaphase chromosome damage is observed in AT cells as compared with normal cells which, in contrast to AT cells, exhibit a strong G(2) arrest manifest as an abrupt reduction in the mitotic index. Thus, an active checkpoint facilitates repair of chromosomal breaks in normal cells. Treatment with caffeine that abrogates the G(2) checkpoint without significantly affecting DSB rejoining increases metaphase chromosome damage of normal cells to the AT level but leaves unchanged interphase chromosome damage in G(2). Caffeine has no effect on any of these end points in AT cells. These observations represent the first direct evidence that the G(2) checkpoint facilitates repair of chromosome damage, presumably by supporting repair of DNA DSBs. Failure to arrest will lead to chromatin condensation and conversion of unrepaired DNA DSBs to chromosomal breaks during G(2)-to-M phase transition.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources