Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May 15;78(25):2911-8.
doi: 10.1016/j.lfs.2005.11.017. Epub 2005 Dec 20.

Phenylsulphonyl urenyl chalcone derivatives as dual inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase

Affiliations

Phenylsulphonyl urenyl chalcone derivatives as dual inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase

A Araico et al. Life Sci. .

Abstract

Two series of phenylsulphonyl urenyl chalcone derivatives (UCH) with various patterns of substitution were tested for their effects on nitric oxide (NO) and prostaglandin E2 (PGE2) overproduction in RAW 264.7 macrophages. None of the tested compounds reduced NO production more than 50% at 10 microM but most of them inhibited the generation of PGE2 with IC50 values under the micromolar range. Me-UCH 1, Me-UCH 5, Me-UCH 9, Cl-UCH 1, and Cl-UCH 9 were selected to evaluate their influence on human leukocyte functions and eicosanoids generation. These derivatives selectively inhibited cyclo-oxygenase-2 (COX-2) activity in human monocytes being Me-UCH 5 the most potent (IC50 0.06 microM). Selected compounds also reduced leukotriene B4 synthesis in human neutrophils by a direct inhibition of 5-lipoxygenase (5-LO) activity, with IC50 values from 0.5 to 0.8 microM. In addition, lysosomal enzyme secretion, such as elastase or myeloperoxidase as well as superoxide generation in human neutrophils were also reduced in a similar range. Our findings indicate that UCH derivatives exert a dual inhibitory effect on COX-2/5-LO activity. The profile and potency of these compounds may have relevance for the modulation of the inflammatory and nociceptive responses with reduction of undesirable side-effects associated with NSAIDs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources