Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Dec;97(6):374-81.
doi: 10.1111/j.1742-7843.2005.pto_160.x.

Acute renal effects of intravenous bisphosphonates in the rat

Affiliations
Free article
Comparative Study

Acute renal effects of intravenous bisphosphonates in the rat

Thomas Pfister et al. Basic Clin Pharmacol Toxicol. 2005 Dec.
Free article

Abstract

Bisphosphonates are potent osteoclast inhibitors that have been associated with renal toxicity following rapid intravenous administration of high doses, which was hypothesised to be due to precipitation of bisphosphonate aggregates or complexes in the kidney. Five studies were conducted in rats investigating the characteristics of bisphosphonate-related acute renal effects. These studies included single intravenous injections of the nitrogen-containing bisphosphonates (1) ibandronate (1-20 mg/kg), or (2) zoledronate (1-10 mg/kg); (3) a single nephrotoxic dose of the non-nitrogen-containing bisphosphonate, clodronate (2 x 200 mg/kg intraperitoneal injection); (4) a single low dose of ibandronate (1 mg/kg); (5) a single high dose of zoledronate (10 mg/kg). Clinical biochemistry and kidney histopathology were performed 1 and/or 4 days after bisphosphonate dosing. The proximal convoluted tubules were the primary target for renal injury. Tubular degeneration and single cell necrosis of the these tubules were observed with all three bisphosphonates on the fourth, but not the first day after dosing. Differences between the bisphosphonates in the type and/or localisation of the lesions were apparent. Granular deposits in the lumen of distal tubules were apparent with the highest dose of zoledronate (10 mg/kg). However, intraluminal debris was proteinaceous with no evidence of any precipitation of bisphosphonate, or formation of aggregates or complexes in the kidney. Generally, biochemical parameters of renal safety and urinary enzymes did not differ significantly from controls. In summary, bisphosphonate-related renal changes did not appear to be due to the precipitation, aggregation or complexation of bisphosphonate, and biochemical parameters of renal safety did not reliably detect this renal injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources