Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan 9;580(1):155-60.
doi: 10.1016/j.febslet.2005.11.068. Epub 2005 Dec 6.

Modulation of MPP+ uptake by procyanidins in Caco-2 cells: involvement of oxidation/reduction reactions

Affiliations
Free article

Modulation of MPP+ uptake by procyanidins in Caco-2 cells: involvement of oxidation/reduction reactions

Ana Faria et al. FEBS Lett. .
Free article

Abstract

It is becoming increasingly evident that the absorption of certain nutrients and drugs and their effects are largely influenced by the concomitant ingestion of other substances. As various xeno- and endobiotics belong to the class of organic cations, the aim of this work was to study the modulation of the intestinal apical uptake of organic cations by diet procyanidins. Five procyanidin fractions with different structural complexity were obtained after fractionation of a grape seed extract. The effect of these compounds on 1-methyl-4-phenylpyridinium (MPP+) uptake was evaluated in Caco-2 cells. Apical uptake of 3H-MPP+ by Caco-2 cells was increased by a 60 min exposure to 600 microg ml(-1) of procyanidin fractions, that increase being positively related with procyanidins structural complexity. It was verified that 3H-MPP+ uptake increased with preincubation time. It was speculated that procyanidins were oxidized during preincubation, this change could interfered with transport activity. Tested oxidizing agents showed that the redox state of the transporter could affect its activity. Additionally, trans-stimulation experiments showed that catechin and fraction I (the simpler fraction) can use the same transporter as MPP+. The results are compatible with the hypothesis of these compounds being competitive inhibitors of MPP+ transport. In conclusion, procyanidins are capable to modulate MPP+ apical uptake in Caco-2 cells, this transport being most probably modulated through oxidation-reduction phenomena. Interactions between these compounds and drugs present in the diet may affect their absorption and bioavailability. Both the concentration and complexity of the procyanidin compounds should be taken into account in medical practice.

PubMed Disclaimer

Publication types

MeSH terms