Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar;31(3):515-24.
doi: 10.1016/j.mcn.2005.11.005. Epub 2005 Dec 20.

Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites

Affiliations

Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites

Maik Annies et al. Mol Cell Neurosci. 2006 Mar.

Abstract

The transmembrane form of agrin (TM-agrin) is primarily expressed in the CNS, particularly on neurites. To analyze its function, we clustered TM-agrin on neurons using anti-agrin antibodies. On axons from the chick CNS and PNS as well as on axons and dendrites from mouse hippocampal neurons anti-agrin antibodies induced the dose- and time-dependent formation of numerous filopodia-like processes. The processes appeared within minutes after antibody addition and contained a complex cytoskeleton. Formation of processes required calcium, could be inhibited by cytochalasine D, but was not influenced by staurosporine, heparin or pervanadate. Time-lapse video microscopy revealed that the processes were dynamic and extended laterally along the entire length of the neuron. The lateral processes had growth cones at their tips that initially adhered to the substrate, but subsequently collapsed and were retracted. These data provide the first evidence for a specific role of TM-agrin in shaping the cytoskeleton of neurites in the developing nervous system.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources