Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Feb 17;376(2):315-28.
doi: 10.1016/0005-2728(75)90024-9.

A rapid, light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution

Free article

A rapid, light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution

G T Babcock et al. Biochim Biophys Acta. .
Free article

Abstract

A rapid, light-induced reversible component in Signal II is observed upon inhibition of oxygen evolution in broken spinach chloroplasts. The inhibitory treatments used include Tris washing, heat, treatment with chaotropic agents, and aging. This new Signal II component is in a 1 : 1 ratio with Signal I (P700). Its formation corresponds to a light-induced oxidation which occurs in less than 500 mus. The subsequent decay of the radical results from a reduction which occurs more rapidly as this free radical component is complete following a single 10-mus flash, and it occurs with a quantum efficiency similar to that observed for Signal I formation. Red light is more effective than far-red light in the generation of this species, and, in preilluminated chloroplasts, 3-(3,4-dichlorophenyl)-1,1-dimethylurea blocks its formation. Inhibition studies show that the decline in oxygen evolution parallels the activation of this Signal II component. These results are interpreted in terms of a model in which two pathways, one involving water, the other involving the rapid Signal II component, compete for oxidizing equivalents generated by Photosystem II. In broken chloroplasts this Signal II pathway is deactivated and water is the principal electron donor. However, upon inhibition of oxygen evolution, the Signal II pathway is activated.

PubMed Disclaimer

Publication types