Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Feb 17;376(2):329-44.
doi: 10.1016/0005-2728(75)90025-0.

The rapid component of electron paramagnetic resonance signal II: a candidate for the physiological donor to photosystem II in spinach chloroplasts

Free article

The rapid component of electron paramagnetic resonance signal II: a candidate for the physiological donor to photosystem II in spinach chloroplasts

G T Babcock et al. Biochim Biophys Acta. .
Free article

Abstract

Rapid light-induced transients in EPR Signal IIf (F-+) are observed in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-treated, Tris-washed chloroplasts until the state F P680 Q minus is reached. In the absence of exogenous redox mediators several flashes are required to saturate this photoinactive state. However, the Signal IIf transient is observed on only the first flash following DCMU addition if an efficient donor to Signal IIf, phenylenediamine or hydroquinone, is present. Complementary polarographic measurements show that under these conditions oxidized phenylenediamine is produced only on the first flash of a series. The DCMU inhibition of Signal IIf can be completely relieved by oxidative titration of a one-electron reductant with E'Os.o equals to + 480 mV. At high reduction potentials the decay time of Signal IIf is constant at about 300 ms, whereas in the absence of DCMU the decay time is longer and increases with increasing reduction potential. A model is proposed in which Q minus, the reduced Photosystem II primary acceptor, and D, a one-electron 480 mV donor endogenous to the chloroplast suspension, compete in the reduction of Signal IIf (F-+). At high potentials D is oxidized in the dark, and the (Q-+F-+) back reaction regenerates the photoactive F P680 Q state. The electrochemical and kinetic evidence is consistent with the hypothesis that the Signal IIf species, F, is identical with Z, the physiological donor to P680.

PubMed Disclaimer

Similar articles

Cited by

Publication types