Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 28;127(51):18093-9.
doi: 10.1021/ja056352t.

Mechanistic impact of water addition to SmI2: consequences in the ground and transition state

Affiliations

Mechanistic impact of water addition to SmI2: consequences in the ground and transition state

Edamana Prasad et al. J Am Chem Soc. .

Abstract

The mechanistic impact of water addition to SmI2 on the ground state and rate-limiting transition state structures in the reduction of benzyl bromide was determined using UV-vis spectroscopy, cyclic voltammetry, vapor pressure osmommetry, and stopped-flow spectrophotometric studies. The results obtained from these studies show that, upon addition of water, SmI2 in THF (or DME) becomes partially water-solvated by displacing metal-coordinated solvent. Further addition of water displaces remaining bound solvent and induces a monomer-dimer equilibrium of the SmI2-water complex. Concomitant with this process, a thermodynamically more powerful reductant is created. Rate studies on the reduction of benzyl bromide by SmI2-water are consistent with reaction occurring through a dimeric transition state with the assembly of the activated complex requiring an equivalent of water at low concentrations but not at higher concentrations. The mechanistic complexity of the SmI2-water system shows that simple empirical models describing the role of water in SmI2-mediated reductions are likely to contain a high degree of uncertainty.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources