Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 20:2:79.
doi: 10.1186/1742-4690-2-79.

Involvement of claudin-7 in HIV infection of CD4(-) cells

Affiliations

Involvement of claudin-7 in HIV infection of CD4(-) cells

Junying Zheng et al. Retrovirology. .

Abstract

Background: Human immunodeficiency virus (HIV) infection of CD4(-) cells has been demonstrated, and this may be an important mechanism for HIV transmission.

Results: We demonstrated that a membrane protein, claudin-7 (CLDN-7), is involved in HIV infection of CD4(-) cells. A significant increase in HIV susceptibility (2- to 100-fold) was demonstrated when CLDN-7 was transfected into a CD4(-) cell line, 293T. In addition, antibodies against CLDN-7 significantly decreased HIV infection of CD4(-) cells. Furthermore, HIV virions expressing CLDN-7 on their envelopes had a much higher infectivity for 293T CD4(-) cells than the parental HIV with no CLDN-7. RT-PCR results demonstrated that CLDN-7 is expressed in both macrophages and stimulated peripheral blood leukocytes, suggesting that most HIV virions generated in infected individuals have CLDN-7 on their envelopes. We also found that CLDN-7 is highly expressed in urogenital and gastrointestinal tissues.

Conclusion: Together these results suggest that CLDN-7 may play an important role in HIV infection of CD4(-) cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
HIV infection of LNCaP cells. LNCaP or HeLa-CD4 cells in 24-well culture plates (104 cells/well) were infected with HIV either with or without gp120 protein on its envelope [Env(-) and Env(+) HIV]. A) A significantly high percentage of EGFP-positive cells was demonstrated in the LNCaP cell cultures infected by HIV Env(-) virus (9–14%). Infection of HeLa-CD4 cells by HIV Env(+) was used as a positive control to assess anti-gp120 or -gp160 function of the antibodies. Infection of HeLa cells was performed as a negative control. The infections of HIV either with or without Env showed very low infectivity for HeLa cells, as demonstrated with no EGFP-positive cells in the infected culture, or occasionally there were one or two EGFP-positive colonies. In other experiments, we also infected HeLa-CD4 cells with Env(-) HIVNL4-3, and found that the Env(-) HIV strain did not infect HeLa-CD4. These results have been previously reported (22). B) Infection of CD4(-) cell lines by HIVNL4-3-Env(-)-EGFP virus prepared from an oral epithelial cell line derived from a patient. The cell line was established and maintained in our laboratory. C) Infection of the LNCaP and HeLa-CD4 cell lines by HIV at various concentrations. Because the figure is in log scale, the standard deviations do not appear clearly. These are: 1) LNCaP: 900 ± 38 (5 ng), 205 ± 11(1.5 ng), 24 ± 5.6 (0.5 ng), 8.5 ± 0.7 (0.15 ng), 2.5 ± 0.7 (50 pg); and 2) HeLa-CD4: 1114 ± 115 (5 ng), 638 ± 47 (1.5 ng), 80 ± 10 (0.5 ng), 14.5 ± 2.1 (0.15 ng), 3.5 ± 0.71 (50 pg), 1 ± 0 (15 pg).
Figure 2
Figure 2
Effect of CLDN-7 molecules upon infection of 293T cells by HIVNL4-3. A) HIVNL4-3 Env(-) virus infection of either CLDN-7211- or CLDN-7158-modified 293T cells. In experiment 1, HIV Env(-) at 50 ng of p24 was used to infect 104 cells in each well; in experiment 2, 104 cells were infected by virus at 100 ng of p24. B) HIVNL4-3 Env(+) virus infection of either CLDN-7211- or CLDN-7158-modified 293T cells. Plasmid pCDNA3-transfected 293T cells were also used as a control.
Figure 3
Figure 3
Inhibition of HIV infection by antibodies specific to CLDN-7. A) Immunostaining of CLDN-7211 (upper panel) and CLDN-7158 (lower panel) by CLDN-7-specific polyclonal antibodies. 293T cells (5 × 104) were plated into 35-mm plates 24 hours prior to transfection. CLDN-7 plasmids (3 μg) were used for transfection of each 35-mm plate. At two days post-transfection, the cells were immunostained. CLDN-7 antibodies were added into the plates overnight at 4°C. B) Antisera from NIH (anti-gp160, cat. 191), Zymed (anti-CLDN-7, 0.25 mg/ml), or made by us were added to LNCaP cell cultures at 1:100 v/v 10 minutes prior to adding HIV. Six days post-infection, EGFP-positive cells were counted. Infection of LNCaP cultures with no antibodies was set as the control. EGFP-positive cells in the culture treated with antibodies against CLDN-7 demonstrated 27% ± 0.6% viral infection compared to the control with no antibodies in the cell culture.
Figure 4
Figure 4
Infectivity of CLDN-7211- or CLDN-7158-modified Env(-) virus. A) Western blot of proteins isolated from the virus generated from the transfected 293T cells by pNL4-3-EGFP-Env(-) and CLDN-7. Cell culture medium collected from cells transfected with CLDN-7 was used as a control to assess the background of CLDN-7 in microvesicles. Cellular proteins isolated from CLDN-7 plasmid-transfected cells were used as a positive control. The monomers of CLDN-7 are approximately 22 kd. Lane M is a molecular marker lane. The monomers of CLDN-7 are approximately 22 kd. B) CLDN-7-modified HIVNL4-3 Env(-) virus showed significantly higher infectivity for 293T cells. C) Infection of either LNCaP or CEM CD4(+) T-lymphocyte cell lines by CLDN-7-modified HIV, with approximately a 1.5- to 2-fold increase of viral infection. D) CLDN-7-modified HIVJRCSF virus with intact gp120 showed significantly higher infectivity for a CD4(-) cell line, PC-3, than the virus with no CLDN-7 on its surface.
Figure 5
Figure 5
Expression of CLND-7211 in PBL and macrophages. RNA isolated from unstimulated PBL, interleukin 2-stimulated PBL, macrophages, and control cell lines was analyzed using RT-PCR. RNA samples were reverse transcribed using the oligo-dT primer, followed by PCR using the primers 5'-CTCCTCTGACTTCAACAGCG-3' and 5'-TGTTGCTGTAGCCAAATTCG-3' to detect the glyceraldehydes-3-phosphate dehydrogenase (GAPDH) gene as RNA standard, and the primers described previously [26] for detecting CLDN-7 RNA. Panels A and B are RT-PCR from different samples.
Figure 6
Figure 6
Expression of CLDN-7 molecules in human tissues. A nylon filter preloaded with RNA from various tissues from BD Clontech (Palo Alto, CA) was used to assess the expression levels of CLDN-7 in various tissues. The left panel shows the hybridization of the tissue samples in the filter by a CLDN-7 probe containing the coding region, and the right panel shows the corresponding tissues.
Figure 7
Figure 7
Two models for gp120-independent HIV infection. Model 1: HIV may use cellular proteins that are anchored to its envelope to bind to either CLDN-7 or other proteins. In LNCaP, both CLDN-7 and associated proteins involved in gp120-independent infection are present. In 293T cells, neither CLDN-7 nor the other infection-related membrane protein(s) is present. Expression of CLDN-7 in 293T may increase infectivity, but the levels of infection of the CLDN-7-modified 293T may still be significantly lower than those for LNCaP. Model 2: HIV may use cellular proteins that are anchored to its envelope to bind to a CLDN-7-associated complex. Although transfection of CLDN-7 can express this protein on the cell surface, the lack of the CLDN-7-associated protein decreases the binding of virus to the target cells.

Similar articles

Cited by

References

    1. Dickerson MC, Johnston J, Delea TE, White A, Andrews E. The causal role for genital ulcer disease as risk factor for transmission of human immunodeficiency virus. Sex Transm Dis. 1996;23:429–440. - PubMed
    1. Kozak SL, Platt EJ, Madani N, Ferro FE, Jr, Peden K, Kabat D. CD4, CXCR-4, and CCR-5 dependencies for infections by primary patient and laboratory-adapted isolates of human immunodeficiency virus type 1. J Virol. 1997;71:873–882. - PMC - PubMed
    1. Miller CJ. Animal models of viral sexually transmitted diseases. Am J Reprod Immunol. 1994;31:52–63. - PubMed
    1. Miller CJ, Alexander NJ, Sutjipto S, Joye SM, Hendrickx AG, Jennings M, Marx PA. Effects of virus dose and nonoxynol-9 on the genital transmission of SIV in rhesus macaques. J Med Primatol. 1990;19:401–409. - PubMed
    1. Spira AI, Marx PA, Patterson BK, Mahoney J, Koup RA, Wolinsky SM, Ho DD. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–225. - PMC - PubMed

Publication types