Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr;95(4):2404-16.
doi: 10.1152/jn.00578.2005. Epub 2005 Dec 21.

Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina

Affiliations
Free article

Shift of intracellular chloride concentration in ganglion and amacrine cells of developing mouse retina

Ling-Li Zhang et al. J Neurophysiol. 2006 Apr.
Free article

Abstract

GABA and glycine provide excitatory action during early development: they depolarize neurons and increase intracellular calcium concentration. As neurons mature, GABA and glycine become inhibitory. This switch from excitation to inhibition is thought to result from a shift of intracellular chloride concentration ([Cl-]i) from high to low, but in retina, measurements of [Cl-]i or chloride equilibrium potential (ECl) during development have not been made. Using the developing mouse retina, we systematically measured [Cl-]i in parallel with GABA's actions on calcium and chloride. In ganglion and amacrine cells, fura-2 imaging showed that before postnatal day (P) 6, exogenous GABA, acting via ionotropic GABA receptors, evoked calcium rise, which persisted in HCO3- -free buffer but was blocked with 0 extracellular calcium. After P6, GABA switched to inhibiting spontaneous calcium transients. Concomitant with this switch we observed the following: 6-methoxy-N-ethylquinolinium iodide (MEQ) chloride imaging showed that GABA caused an efflux of chloride before P6 and an influx afterward; gramicidin-perforated-patch recordings showed that the reversal potential for GABA decreased from -45 mV, near threshold for voltage-activated calcium channel, to -60 mV, near resting potential; MEQ imaging showed that [Cl-]i shifted steeply around P6 from 29 to 14 mM, corresponding to a decline of ECl from -39 to -58 mV. We also show that GABAergic amacrine cells became stratified by P4, potentially allowing GABA's excitatory action to shape circuit connectivity. Our results support the hypothesis that a shift from high [Cl-]i to low causes GABA to switch from excitatory to inhibitory.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources